TY - JOUR A1 - Benn, Andreas A1 - Hiepen, Christian A1 - Osterland, Marc A1 - Schütte, Christof A1 - Zwijsen, An A1 - Knaus, Petra T1 - Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence JF - FASEB Journal N2 - Before the onset of sprouting angiogenesis, the endothelium is prepatterned for the positioning of tip and stalk cells. Both cell identities are not static, as endothelial cells (ECs) constantly compete for the tip cell position in a dynamic fashion. Here, we show that both bone morphogenetic protein (BMP) 2 and BMP6 are proangiogenic in vitro and ex vivo and that the BMP type I receptors, activin receptor-like kinase (ALK)3 and ALK2, play crucial and distinct roles in this process. BMP2 activates the expression of tip cell–associated genes, such as DLL4 (delta-like ligand 4) and KDR (kinase insert domain receptor), and p38-heat shock protein 27 (HSP27)–dependent cell migration, thereby generating tip cell competence. Whereas BMP6 also triggers collective cell migration via the p38-HSP27 signaling axis, BMP6 induces in addition SMAD1/5 signaling, thereby promoting the expression of stalk cell–associated genes, such as HES1 (hairy and enhancer of split 1) and FLT1 (fms-like tyrosine kinase 1). Specifically, ALK3 is required for sprouting from HUVEC spheroids, whereas ALK2 represses sprout formation. We demonstrate that expression levels and respective complex formation of BMP type I receptors in ECs determine stalk vs. tip cell identity, thus contributing to endothelial plasticity during sprouting angiogenesis. As antiangiogenic monotherapies that target the VEGF or ALK1 pathways have not fulfilled efficacy objectives in clinical trials, the selective targeting of the ALK2/3 pathways may be an attractive new approach. Y1 - 2017 U6 - https://doi.org/10.1096/fj.201700193RR VL - 31 IS - 11 SP - 4720 EP - 4733 ER - TY - GEN A1 - Osterland, Marc A1 - Benn, Andreas A1 - Prohaska, Steffen A1 - Schütte, Christof T1 - Single Cell Tracking in Phase-Contrast Microscopy T2 - EMBL Symposium 2015 - Seeing is Believing - Imaging the Processes of Life N2 - In this work, we developed an automatic algorithm to analyze cell migration in chemotaxis assays, based on phase-contrast time-lapse microscopy. While manual approaches are still widely used in recent publications, our algorithm is able to track hundreds of single cells per frame. The extracted paths are analysed with traditional geometrical approaches as well as diffusion-driven Markov state models (MSM). Based on these models, a detailed view on spatial and temporal effects is possible. Using our new approach on experimental data, we are able to distinguish between directed migration (e.g. towards a VEGF gradient) and random migration without favored direction. A calculation of the committor probabilities reveals that cells of the whole image area are more likely to migrate directly towards the VEGF than away from it during the first four hours. However, in absence of a chemoattractant, cells migrate more likely to their nearest image border. These conclusions are supported by the spatial mean directions. In a next step, the cell-cell interaction during migration and the migration of cell clusters will be analyzed. Furthermore, we want to observe phenotypical changes during migration based on fluorescence microscopy and machine learning. The algorithm is part of a collaborative platform which brings the experimental expertise of scientists from life sciences and the analytical knowledge of computer scientists together. This platform is built using web-based technologies with a responsive real-time user interface. All data, including raw and metadata as well as the accompanying results, will be stored in a secure and scalable compute cluster. The compute cluster provides sufficient space and computational power for modern image-based experiments and their analyses. Specific versions of data and results can be tagged to keep immutable records for archival. Y1 - 2015 ER -