TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Anderson, Lovis A1 - Hiller, Benjamin T1 - A Sweep-Plane Algorithm for the Computation of the Volume of a Union of Polytopes N2 - Optimization models often feature disjunctions of polytopes as submodels. Such a disjunctive set is initially (at best) relaxed to its convex hull, which is then refined by branching. To measure the error of the convex relaxation, the (relative) difference between the volume of the convex hull and the volume of the disjunctive set may be used. This requires a method to compute the volume of the disjunctive set. Naively, this can be done via inclusion/exclusion and leveraging the existing code for the volume of polytopes. However, this is often inefficient. We propose a revised variant of an old algorithm by Bieri and Nef (1983) for this purpose. The algorithm uses a sweep-plane to incrementally calculate the volume of the disjunctive set as a function of the offset parameter of the sweep-plane. T3 - ZIB-Report - 18-37 KW - Disjunctive Programming KW - Volume Algorithm KW - Union of Polytopes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69489 SN - 1438-0064 ER - TY - THES A1 - Anderson, Lovis T1 - The Computation of the Volume of the Union of Polytopes via a Sweep-Plane Algorithm N2 - Das Thema dieser Arbeit ist ein Volumen-Algorithmus für die Vereinigung von Polytopen. Der Algorithmus basiert auf der Arbeit von Bieri und Nef. Er berechnet das Volumen der Vereinigung von Polytopen mit einem Sweep-Verfahren. Dabei wird eine Hyperebene im Raum verschoben und das Volumen auf der einen Seite der Hyperebene berechnet. Umso weiter die Hyperebene verschobe wird, desto größer ist auch der Halbraum. Unser Algorithmus berechnet das Volumen einer Vereinigung von Polytopen geschnitten mit dem Halbraum der Sweep-Ebene als eine Funktion abhängig von der Veschiebung. Ab einem gewissen Punkt liegt der Körper dabei komplett im Halbraum der Sweep-Ebene und das Volumen bleibt konstant. Unser Algorithmus unterscheidet sich in zwei Punkten von dem Algorithmus von Bieri und Nef. Erstens funktioniert er nur auf der Vereinigung von Polytopen, wohingegen der Algorithmus von Bieri und Nef für Nef-Polyeder funktioniert. Diese sind eine Verallgemeinerung von Polyedern, die auch die Klasse der Vereinigung von Polytopen umfasst. Für uns ist das allerdings kein Nachteil, da unsere Datensätze zu Vereinigungen von Polytopen führen. Zweitens ist unser Algorithmus in zwei Teile aufgeteilt. Im ersten Teil wird eine Datenstruktur entwickelt, aus der im zweiten Teil zusammen mit einer Richtung die Sweep-Ebenen-Volumenfunktion berechnet wird. Der Großteil der Komplexität liegt im ersten Teil des Algorithmus. Das hat den Vorteil, dass wir die Volumenfunktionen für viele verschiedene Richtungen berechnen können. So können Einblicke in die Struktur des Körpers gewonnen werden. Der Algorithmus beruht auf zwei verschiedenen Zerlegungsansätzen. Zuerst können wir mit Hilfe von Anordnungen von Hyperebenen eine Vereinigung von Polytopen in ihre Zellen zerlegen. Dabei berufen wir uns auf die Arbeit von Gerstner und Holtz, in der das Konzept der Positionsvektoren eingeführt wird. Diese nutzen wir um die Ecken und ihre benachbarten Zellen zu bestimmen. So erhalten wir eine Zerlegung unserer Vereinigung in Zellen, deren paarweise Schnitte kein Volumen haben. Das zweite Zerlegungskonzept ist die konische Zerlegung, wie sie von Lawrence eingeführt wurde. Mit Hilfe dieser können wir die Indikatorfunktion eines Polytops als die Summe der Indikatorfunktionen seiner Vorwärtskegel schreiben. Die Sweep-Ebenen Volumenfunktionen können dann leicht mit Hilfe einer altbekannten Formel für das Volumen von Simplices berechnet werden. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71829 ER -