TY - JOUR A1 - Ziesche, Ralf F. A1 - Arlt, Tobias A1 - Finegan, Donal P. A1 - Heenan, Thomas M.M. A1 - Tengattini, Alessandro A1 - Baum, Daniel A1 - Kardjilov, Nikolay A1 - Markötter, Henning A1 - Manke, Ingo A1 - Kockelmann, Winfried A1 - Brett, Dan J.L. A1 - Shearing, Paul R. T1 - 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique JF - Nature Communications N2 - The temporally and spatially resolved tracking of lithium intercalation and electrode degradation processes are crucial for detecting and understanding performance losses during the operation of lithium-batteries. Here, high-throughput X-ray computed tomography has enabled the identification of mechanical degradation processes in a commercial Li/MnO2 primary battery and the indirect tracking of lithium diffusion; furthermore, complementary neutron computed tomography has identified the direct lithium diffusion process and the electrode wetting by the electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and are used to detect minor fluctuations which are difficult to observe using conventional three dimensional rendering tools. Moreover, the ‘unrolling’ provides a platform for correlating multi-modal image data which is expected to find wider application in battery science and engineering to study diverse effects e.g. electrode degradation or lithium diffusion blocking during battery cycling. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-019-13943-3 VL - 11 SP - 777 ER -