TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Polyhedral Investigations on Stable Multi-Sets N2 - Stable multi-sets are an evident generalization of the well-known stable sets. As integer programs, they constitute a general structure which allows for a wide applicability of the results. Moreover, the study of stable multi-sets provides new insights to well-known properties of stable sets. In this paper, we continue our investigations started in [{\sl Koster and Zymolka 2002}] and present results of three types: on the relation to other combinatorial problems, on the polyhedral structure of the stable multi-set polytope, and on the computational impact of the polyhedral results. First of all, we embed stable multi-sets in a framework of generalized set packing problems and point out several relations. The second part discusses properties of the stable multi-set polytope. We show that the vertices of the linear relaxation are half integer and have a special structure. Moreover, we strengthen the conditions for cycle inequalities to be facet defining, show that the separation problem for these inequalities is polynomial time solvable, and discuss the impact of chords in cycles. The last result allows to interpret cliques as cycles with many chords. The paper is completed with a computational study to the practical importance of the cycle inequalities. The computations show that the performance of state-of-the-art integer programming solvers can be improved significantly by including these inequalities. T3 - ZIB-Report - 03-10 KW - stable multi-sets KW - polyhedral combinatorics Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7324 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Stable Multi-Sets N2 - In this paper we introduce a generalization of stable sets: stable multi-sets. A stable multi-set is an assignment of integers to the vertices of a graph, such that specified bounds on vertices and edges are not exceeded. In case all vertex and edge bounds equal one, stable multi-sets are equivalent to stable sets. For the stable multi-set problem, we derive reduction rules and study the associated polytope. We state necessary and sufficient conditions for the extreme points of the linear relaxation to be integer. These conditions generalize the conditions for the stable set polytope. Moreover, the classes of odd cycle and clique inequalities for stable sets are generalized to stable multi-sets and conditions for them to be facet defining are determined. The study of stable multi-sets is initiated by optimization problems in the field of telecommunication networks. Stable multi-sets emerge as an important substructure in the design of optical networks. T3 - ZIB-Report - 00-36 KW - stable multi-sets KW - polyhedral combinatorics Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6047 ER -