TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Helfmann, Luzie A1 - Zonker, Johannes A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Human mobility and innovation spreading in ancient times: a stochastic agent-based simulation approach JF - EPJ Data Science N2 - Human mobility always had a great influence on the spreading of cultural, social and technological ideas. Developing realistic models that allow for a better understanding, prediction and control of such coupled processes has gained a lot of attention in recent years. However, the modeling of spreading processes that happened in ancient times faces the additional challenge that available knowledge and data is often limited and sparse. In this paper, we present a new agent-based model for the spreading of innovations in the ancient world that is governed by human movements. Our model considers the diffusion of innovations on a spatial network that is changing in time, as the agents are changing their positions. Additionally, we propose a novel stochastic simulation approach to produce spatio-temporal realizations of the spreading process that are instructive for studying its dynamical properties and exploring how different influences affect its speed and spatial evolution. Y1 - 2018 U6 - https://doi.org/10.1140/epjds/s13688-018-0153-9 VL - 7 IS - 1 PB - EPJ Data Science ET - EPJ Data Science ER - TY - JOUR A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Djurdjevac, Ana A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - From interacting agents to density-based modeling with stochastic PDEs JF - Communications in Applied Mathematics and Computational Science N2 - Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models. Y1 - 2021 U6 - https://doi.org/10.2140/camcos.2021.16.1 VL - 16 IS - 1 SP - 1 EP - 32 ER - TY - GEN A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Djurdjevac, Ana A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - From interacting agents to density-based modeling with stochastic PDEs N2 - Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models. T3 - ZIB-Report - 19-21 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73456 SN - 1438-0064 ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Zonker, Johannes A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading JF - Mathematical Biosciences N2 - Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios. Y1 - 2021 U6 - https://doi.org/10.1016/j.mbs.2021.108619 VL - 336 PB - Elsevier ER -