TY - GEN A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Hybrid Models for Chemical Reaction Networks: Multiscale Theory and Application to Gene Regulatory Systems N2 - Well-mixed stochastic chemical kinetics are properly modelled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows to express various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. T3 - ZIB-Report - 17-29 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64264 ER - TY - GEN A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Djurdjevac, Ana A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - From interacting agents to density-based modeling with stochastic PDEs N2 - Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models. T3 - ZIB-Report - 19-21 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73456 SN - 1438-0064 ER - TY - GEN A1 - Winkelmann, Stefanie T1 - Markov Control with Rare State Observation: Average Optimality N2 - This paper investigates the criterion of long-term average costs for a Markov decision process (MDP) which is not permanently observable. Each observation of the process produces a fixed amount of \textit{information costs} which enter the considered performance criterion and preclude from arbitrarily frequent state testing. Choosing the \textit{rare} observation times is part of the control procedure. In contrast to the theory of partially observable Markov decision processes, we consider an arbitrary continuous-time Markov process on a finite state space without further restrictions on the dynamics or the type of interaction. Based on the original Markov control theory, we redefine the control model and the average cost criterion for the setting of information costs. We analyze the constant of average costs for the case of ergodic dynamics and present an optimality equation which characterizes the optimal choice of control actions and observation times. For this purpose, we construct an equivalent freely observable MDP and translate the well-known results from the original theory to the new setting. T3 - ZIB-Report - 16-59 KW - Markov decision process KW - partial observability KW - average optimality KW - information costs Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60981 SN - 1438-0064 ER -