TY - GEN A1 - Tjusila, Gennesaret A1 - Besancon, Mathieu A1 - Turner, Mark A1 - Koch, Thorsten T1 - How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem N2 - It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest. T3 - ZIB-Report - 23-15 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-90902 ER - TY - JOUR A1 - Tjusila, Gennesaret A1 - Besançon, Mathieu A1 - Turner, Mark A1 - Koch, Thorsten T1 - How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem JF - Operations Research Letters N2 - It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest. Y1 - 2024 U6 - https://doi.org/10.1016/j.orl.2024.107105 VL - 54 SP - 107105 ER -