TY - GEN A1 - Borndörfer, Ralf A1 - Omont, Bertrand A1 - Sagnol, Guillaume A1 - Swarat, Elmar T1 - A Stackelberg game to optimize the distribution of controls in transportation networks N2 - We propose a game theoretic model for the spatial distribution of inspectors on a transportation network. The problem is to spread out the controls so as to enforce the payment of a transit toll. We formulate a linear program to find the control distribution which maximizes the expected toll revenue, and a mixed integer program for the problem of minimizing the number of evaders. Furthermore, we show that the problem of finding an optimal mixed strategy for a coalition of $N$ inspectors can be solved efficiently by a column generation procedure. Finally, we give experimental results from an application to the truck toll on German motorways. T3 - ZIB-Report - 12-15 KW - Stackelberg game KW - Polymatrix game KW - Controls in transportation networks Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14995 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Buwaya, Julia A1 - Sagnol, Guillaume A1 - Swarat, Elmar T1 - Network spot-checking games: Theory and application to toll enforcing in transportation networks JF - Networks N2 - We introduce the class of spot-checking games (SC games). These games model problems where the goal is to distribute fare inspectors over a toll network. In an SC game, the pure strategies of network users correspond to paths in a graph, and the pure strategies of the inspectors are subset of arcs to be controlled. Although SC games are not zero-sum, we show that a Nash equilibrium can be computed by linear programming. The computation of a strong Stackelberg equilibrium (SSE) is more relevant for this problem and we give a mixed integer programming (MIP) formulation for this problem. We show that the computation of such an equilibrium is NP-hard. More generally, we prove that it is NP-hard to compute a SSE in a polymatrix game, even if the game is pairwise zero-sum. Then, we give some bounds on the price of spite, which measures how the payoff of the inspector degrades when committing to a Nash equilibrium. Finally, we report computational experiments on instances constructed from real data, for an application to the enforcement of a truck toll in Germany. These numerical results show the efficiency of the proposed methods, as well as the quality of the bounds derived in this article. Y1 - 2015 U6 - https://doi.org/10.1002/net.21596 VL - 65 SP - 312 EP - 328 PB - Wiley Periodicals, Inc. ER - TY - CHAP A1 - Sagnol, Guillaume A1 - Borndörfer, Ralf A1 - Schlechte, Thomas A1 - Swarat, Elmar ED - Lavi, Ron T1 - The Price of Spite in Spot-checking games T2 - 7th International Symposium on Algorithmic Game Theory (SAGT'2014) N2 - We introduce the class of spot-checking games (SC games). These games model problems where the goal is to distribute fare inspectors over a toll network. Although SC games are not zero-sum, we show that a Nash equilibrium can be computed by linear programming. The computation of a strong Stackelberg equilibrium is more relevant for this problem, but we show that this is NP-hard. However, we give some bounds on the \emph{price of spite}, which measures how the payoff of the inspector degrades when committing to a Nash equilibrium. Finally, we demonstrate the quality of these bounds for a real-world application, namely the enforcement of a truck toll on German motorways. Y1 - 2014 SN - 978-3-662-44802-1 U6 - https://doi.org/10.1007/978-3-662-44803-8 N1 - Brief Announcement included in Back Matter p. 293 following VL - 8768 SP - 293 PB - Springer ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Schulz, Christof A1 - Swarat, Elmar A1 - Weider, Steffen T1 - Duty Rostering in Public Transport - Facing Preferences, Fairness, and Fatigue T2 - Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015) N2 - Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively. Y1 - 2015 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Sagnol, Guillaume A1 - Schlechte, Thomas A1 - Swarat, Elmar T1 - Optimal Toll Enforcement - an Integration of Vehicle Routing and Duty Rostering N2 - We present the problem of planning mobile tours of inspectors on German motorways to enforce the payment of the toll for heavy good trucks. This is a special type of vehicle routing problem with the objective to conduct as good inspections as possible on the complete network. In addition, the crews of the tours have to be scheduled. Thus, we developed a personalized crew rostering model. The planning of daily tours and the rostering are combined in a novel integrated approach and formulated as a complex and large scale Integer Program. The paper focuses first on different requirements for the rostering and how they can be modeled in detail. The second focus is on a bicriterion analysis of the planning problem to find the balance between the control quality and the roster acceptance. On the one hand the tour planning is a profit maximization problem and on the other hand the rostering should be made in a employee friendly way. Finally, computational results on real-world instances show the practicability of our method. T3 - ZIB-Report - 13-79 KW - vehicle routing KW - crew rostering KW - integer programming KW - bicriteria optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-45107 SN - 1438-0064 ER - TY - CHAP A1 - Gamrath, Gerwin A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Swarat, Elmar T1 - An LP-based heuristic for Inspector Scheduling T2 - Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I N2 - We present a heuristic based on linear programming (LP) for the integrated tour and crew roster planning of toll enforcement inspectors. Their task is to enforce the proper paying of a distance-based toll on German motorways. This leads to an integrated tour planning and duty rostering problem; it is called Toll Enforcement Problem (TEP). We tackle the TEP by a standard multi-commodity flow model with some extensions in order to incorporate the control tours. The heuristic consists of two variants. The first, called Price & Branch, is a column generation approach to solve the model’s LP relaxation by pricing tour and roster arc variables. Then, we compute an integer feasible solution by restricting to all variables that were priced. The second is a coarse-to-fine approach. Its basic idea is projecting variables to an aggregated variable space, which is much smaller. The aim is to spend as much algorithmic effort in this coarse model as possible. For both heuristic procedures we will show that feasible solutions of high quality can be computed even for large scale industrial instances. Y1 - 2021 UR - https://patatconference.org/patat2020/proceedings/ VL - 1 SP - 77 EP - 86 ER -