TY - GEN A1 - Schütte, Christof A1 - Sarich, Marco T1 - A Critical Appraisal of Markov State Models N2 - Markov State Modelling as a concept for a coarse grained description of the essential kinetics of a molecular system in equilibrium has gained a lot of atten- tion recently. The last 10 years have seen an ever increasing publication activity on how to construct Markov State Models (MSMs) for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecu- lar sensors to molecular aggregation. Simultaneously the accompanying theory behind MSM building and approximation quality has been developed well be- yond the concepts and ideas used in practical applications. This article reviews the main theoretical results, provides links to crucial new developments, outlines the full power of MSM building today, and discusses the essential limitations still to overcome. T3 - ZIB-Report - 15-18 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54218 SN - 1438-0064 ER - TY - JOUR A1 - Schütte, Christof A1 - Sarich, Marco T1 - A Critical Appraisal of Markov State Models JF - The European Physical Journal Special Topics N2 - Markov State Modelling as a concept for a coarse grained description of the essential kinetics of a molecular system in equilibrium has gained a lot of atten- tion recently. The last 10 years have seen an ever increasing publication activity on how to construct Markov State Models (MSMs) for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecu- lar sensors to molecular aggregation. Simultaneously the accompanying theory behind MSM building and approximation quality has been developed well be- yond the concepts and ideas used in practical applications. This article reviews the main theoretical results, provides links to crucial new developments, outlines the full power of MSM building today, and discusses the essential limitations still to overcome. Y1 - 2015 U6 - https://doi.org/10.1140/epjst/e2015-02421-0 VL - 224 IS - 12 SP - 2445 EP - 2462 ER - TY - GEN A1 - Willenbockel, Christian Tobias A1 - Schütte, Christof T1 - A Variational Bayesian Algorithm for Clustering of Large and Complex Networks N2 - We propose the Blockloading algorithm for the clustering of large and complex graphs with tens of thousands of vertices according to a Stochastic Block Model (SBM). Blockloading is based on generalized Variational Bayesian EM (VBEM) schemes and works for weighted and unweighted graphs. Existing Variational (Bayesian) EM methods have to consider each possible number of clusters sepa- rately to determine the optimal number of clusters and are prone to converge to local optima making multiple restarts necessary. These factors impose a severe restriction on the size and complexity of graphs these methods can handle. In con- trast, the Blockloading algorithm restricts restarts to subnetworks in a way that provides error correction of an existing cluster assignment. The number of clusters need not be specified in advance because Blockloading will return it as a result. We show that Blockloading outperforms all other variational methods regarding reliability of the results and computational efficiency. T3 - ZIB-Report - 15-25 KW - Clustering KW - Variational Bayes EM KW - Model Selection, KW - Stochastic Block Model KW - Networks KW - unsupervised classification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54588 SN - 1438-0064 ER - TY - GEN A1 - Djurdjevac Conrad, Natasa A1 - Weber, Marcus A1 - Schütte, Christof T1 - Finding dominant structures of nonreversible Markov processes N2 - Finding metastable sets as dominant structures of Markov processes has been shown to be especially useful in modeling interesting slow dynamics of various real world complex processes. Furthermore, coarse graining of such processes based on their dominant structures leads to better understanding and dimension reduction of observed systems. However, in many cases, e.g. for nonreversible Markov processes, dominant structures are often not formed by metastable sets but by important cycles or mixture of both. This paper aims at understanding and identifying these different types of dominant structures for reversible as well as nonreversible ergodic Markov processes. Our algorithmic approach generalizes spectral based methods for reversible process by using Schur decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical construction of our new approach by numerical experiments. T3 - ZIB-Report - 15-40 KW - nonreversible Markov processes KW - metastable sets KW - cycle decomposition KW - Schur decomposition Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55739 SN - 1438-0064 ER - TY - GEN A1 - Enciso, Marta A1 - Schütte, Christof A1 - Delle Site, Luigi T1 - Influence of pH and sequence in peptide aggregation via molecular simulation N2 - We employ a recently developed coarse-grained model for peptides and proteins where the effect of pH is automatically included. We explore the effect of pH in the aggregation process of the amyloidogenic peptide KTVIIE and two related sequences, using three different pH environments. Simulations using large systems (24 peptides chains per box) allow us to correctly account for the formation of realistic peptide aggregates. We evaluate the thermodynamic and kinetic implications of changes in sequence and pH upon peptide aggregation, and we discuss how a minimalistic coarse- grained model can account for these details. T3 - ZIB-Report - 15-42 KW - coarse graining KW - peptide aggregation dynamics KW - Monte Carlo Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55805 SN - 1438-0064 ER - TY - JOUR A1 - Enciso, Marta A1 - Schütte, Christof A1 - Delle Site, Luigi T1 - Influence of pH and sequence in peptide aggregation via molecular simulation JF - Journal of Chemical Physics Y1 - 2015 U6 - https://doi.org/https://doi.org/10.1063/1.4935707 VL - 143 IS - 24 ER - TY - JOUR A1 - Schütte, Christof A1 - Nielsen, Adam A1 - Weber, Marcus T1 - Markov State Models and Molecular Alchemy JF - Molecular Physics N2 - In recent years Markov State Models (MSMs) have attracted a consid- erable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g., for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under con- sideration. The performance of the reweighting scheme is illustrated for simple test cases including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed. KW - MSM KW - Reweighting KW - Girsanov Y1 - 2015 U6 - https://doi.org/10.1080/00268976.2014.944597 VL - 113 IS - 1 SP - 69 EP - 78 ER - TY - GEN A1 - Gul, Raheem A1 - Schütte, Christof A1 - Bernhard, Stefan T1 - Mathematical modeling and sensitivity analysis of arterial anastomosis in arm arteries N2 - Cardiovascular diseases are one of the major problems in medicine today and the number of patients increases worldwide. To find the most efficient treatment, prior knowledge about function and dysfunction of the cardiovas- cular system is required and methods need to be developed that identify the disease in an early stage. Mathematical modeling is a powerful tool for prediction and investigation of cardiovascular diseases. It has been shown that the Windkessel model, being based on an analogy between electrical circuits and fluid flow, is a simple but effective method to model the human cardiovascular system. In this paper, we have applied parametric local sensitivity analysis (LSA) to a linear elastic model of the arm arteries, to find and rank sensitive param- eters that may be helpful in clinical diagnosis. A computational model for end-to-side anastomosis (superior ulnar collateral anastomosis with posterior ulnar recurrent, SUC-PUR) is carried out to study the effects of some clinically relevant haemodynamic parameters like blood flow resistance and terminal re- sistance on pressure and flow at different locations of the arm artery. In this context, we also discuss the spatio-temporal dependency of local sensitivities. The sensitivities with respect to cardiovascular parameters reveal the flow resistance and diameter of the vessels as most sensitive parameters. These parameters play a key role in diagnosis of severe stenosis and aneurysms. In contrast, wall thickness and elastic modulus are found to be less sensitive. T3 - ZIB-Report - 15-22 KW - computational cardiovascular model KW - cardiovascular parameters KW - sensitivity analysis KW - anastomosis KW - Windkessel model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54339 SN - 1438-0064 ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Modularity of Directed Networks: Cycle Decomposition Approach JF - Journal of Computational Dynamics 2 (2015) pp. 1-24 N2 - The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network. Y1 - 2015 U6 - https://doi.org/10.3934/jcd.2015.2.1 ER - TY - JOUR A1 - Duwal, Sulav A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Optimal Treatment Strategies in the Context of 'Treatment for Prevention' against HIV/1 in Resource-Poor Settings JF - PloS Computational Biology N2 - An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment-for-prevention’ may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initiation rapidly decreases virus burden, which reduces the number of transmittable viruses and thereby the probability of infection. However, HIV inevitably develops drug resistance, which leads to virus rebound and nullifies the effect of `treatment-for-prevention’ for the time it remains unrecognized. While timely conducted treatment changes may avert periods of viral rebound, necessary treatment options and diagnostics may be lacking in resource-constrained settings. Within this work, we provide a mathematical platform for comparing different treatment paradigms that can be applied to many medical phenomena. We use this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertainment. Both strategies are compared to current clinical protocols (standard of care and the HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 onward transmission exemplarily for South Africa. All therapeutic strategies are assessed using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for solving the respective optimal control problems are provided. Our mathematical model suggests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and no treatment in terms of economic means, life prolongation and reduction of HIV-transmission. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar to the optimal pro-active strategy. Our results suggest that ‘treatment-for-prevention’ may be further improved using either of the two analyzed treatment paradigms. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pcbi.1004200 VL - 11 IS - 4 ER -