TY - GEN A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 N2 - This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic. T3 - ZIB-Report - 10-31 KW - Mixed Integer Programming KW - Problem Instances KW - IP KW - MIP KW - MIPLIB Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12953 ER - TY - JOUR A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 JF - Mathematical Programming Computation Y1 - 2011 UR - http://mpc.zib.de/index.php/MPC/article/view/56 U6 - https://doi.org/10.1007/s12532-011-0025-9 VL - 3 IS - 2 SP - 103 EP - 163 ER - TY - JOUR A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Gamrath, Gerald A1 - Achterberg, Tobias A1 - Bastubbe, Michael A1 - Berthold, Timo A1 - Christophel, Philipp M. A1 - Jarck, Kati A1 - Koch, Thorsten A1 - Linderoth, Jeff A1 - Lübbecke, Marco A1 - Mittelmann, Hans A1 - Ozyurt, Derya A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Shinano, Yuji T1 - MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library JF - Mathematical Programming Computation N2 - We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data. Y1 - 2021 U6 - https://doi.org/10.1007/s12532-020-00194-3 VL - 13 IS - 3 SP - 443 EP - 490 ER - TY - CHAP A1 - Gamrath, Gerald A1 - Melchiori, Anna A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Salvagnin, Domenico T1 - Branching on Multi-aggregated Variables T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015 N2 - In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly. Y1 - 2015 U6 - https://doi.org/10.1007/978-3-319-18008-3_10 VL - 9075 SP - 141 EP - 156 ER - TY - GEN A1 - Gamrath, Gerald A1 - Melchiori, Anna A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Salvagnin, Domenico T1 - Branching on multi-aggregated variables N2 - In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly. T3 - ZIB-Report - 15-10 KW - mixed-integer programming, branch-and-bound, branching rule, strong branching Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53829 SN - 1438-0064 ER - TY - JOUR A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Salvagnin, Domenico T1 - An exploratory computational analysis of dual degeneracy in mixed-integer programming JF - EURO Journal on Computational Optimization N2 - Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different solutions being found by primal heuristics. Nevertheless, only a few methods have been published that either avoid or exploit dual degeneracy. The aim of the present paper is to conduct a thorough computational study on the presence of dual degeneracy for the instances of well-known public MIP instance collections. How many instances are affected by dual degeneracy? How degenerate are the affected models? How does branching affect degeneracy: Does it increase or decrease by fixing variables? Can we identify different types of degenerate MIPs? As a tool to answer these questions, we introduce a new measure for dual degeneracy: the variable–constraint ratio of the optimal face. It provides an estimate for the likelihood that a basic variable can be pivoted out of the basis. Furthermore, we study how the so-called cloud intervals—the projections of the optimal face of the LP relaxations onto the individual variables—evolve during tree search and the implications for reducing the set of branching candidates. Y1 - 2020 U6 - https://doi.org/10.1007/s13675-020-00130-z IS - 8 SP - 241 EP - 246 ER - TY - GEN A1 - Berthold, Timo A1 - Salvagnin, Domenico T1 - Cloud branching N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids. We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30% on standard test sets. T3 - ZIB-Report - 13-01 KW - mixed integer programming KW - branching rule KW - search strategy KW - dual degeneracy Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17301 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Salvagnin, Domenico ED - Gomes, Carla ED - Sellmann, Meinolf T1 - Cloud branching T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids. We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30% on standard test sets. Y1 - 2013 U6 - https://doi.org/10.1007/978-3-642-38171-3_3 VL - 7874 SP - 28 EP - 43 PB - Springer ER - TY - GEN A1 - Berthold, Timo A1 - Mexi, Gioni A1 - Salvagnin, Domenico T1 - Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump N2 - The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method’s success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm. T3 - ZIB-Report - 22-14 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88513 SN - 1438-0064 ER - TY - JOUR A1 - Berthold, Timo A1 - Mexi, Gioni A1 - Salvagnin, Domenico T1 - Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump JF - EURO Journal on Computational Optimization N2 - The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method’s success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-87392 VL - 11 ER -