TY - CHAP A1 - Ramm, Heiko A1 - Victoria Morillo, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans ED - Freysinger, Wolfgang T1 - Visual Support for Positioning Hearing Implants T2 - Proceedings of the 12th annual meeting of the CURAC society Y1 - 2013 SP - 116 EP - 120 ER - TY - GEN A1 - Ramm, Heiko A1 - Morillo Victoria, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans T1 - Visual Support for Positioning Hearing Implants N2 - We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit. T3 - ZIB-Report - 13-53 KW - bone anchored hearing implant KW - surgery planning KW - segmentation KW - visualization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42495 SN - 1438-0064 ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Husseini, Malek E. A1 - Bayat, Amirhossein A1 - Löffler, Maximilian A1 - Liebl, Hans A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Brown, Kevin A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Chen, Di A1 - Bai, Yiwei A1 - Rapazzo, Brandon H. A1 - Yeah, Timyoas A1 - Zhang, Amber A1 - Xu, Shangliang A1 - Hou, Feng A1 - He, Zhiqiang A1 - Zeng, Chan A1 - Xiangshang, Zheng A1 - Liming, Xu A1 - Netherton, Tucker J. A1 - Mumme, Raymond P. A1 - Court, Laurence E. A1 - Huang, Zixun A1 - He, Chenhang A1 - Wang, Li-Wen A1 - Ling, Sai Ho A1 - Huynh, Lê Duy A1 - Boutry, Nicolas A1 - Jakubicek, Roman A1 - Chmelik, Jiri A1 - Mulay, Supriti A1 - Sivaprakasam, Mohanasankar A1 - Paetzold, Johannes C. A1 - Shit, Suprosanna A1 - Ezhov, Ivan A1 - Wiestler, Benedikt A1 - Glocker, Ben A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images JF - Medical Image Analysis N2 - Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102166 VL - 73 ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Bayat, Amirhossein A1 - Husseini, Malek E. A1 - Löffler, Maximilian A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Wei, Qingyue A1 - Brown, Kevin A1 - Wolf, Matthias A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images JF - arXiv Y1 - 2020 ER - TY - JOUR A1 - Hettich, G. A1 - Schierjott, R. A. A1 - Schilling, C. A1 - Maas, A. A1 - Ramm, Heiko A1 - Bindernagel, Matthias A1 - Lamecker, Hans A1 - Grupp, T. M. T1 - Validation of a Statistical Shape Model for Acetabular Bone Defect Analysis JF - ISTA 2018 London Abstract Book N2 - Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters. Y1 - 2018 ER - TY - GEN A1 - Ehlke, Moritz A1 - Frenzel, Thomas A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Akbari Shandiz, Mohsen A1 - Anglin, Carolyn A1 - Zachow, Stefan T1 - Robust Measurement of Natural Acetabular Orientation from AP Radiographs using Articulated 3D Shape and Intensity Models T3 - ZIB-Report - 14-12 KW - articulated shape and intensity models KW - 3D reconstruction KW - acetabular orientation KW - image registration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49824 SN - 1438-0064 ER - TY - CHAP A1 - Kahnt, Max A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan ED - Levine, Joshua A. ED - Paulsen, Rasmus R. ED - Zhang, Yongjie T1 - Feature-Preserving, Multi-Material Mesh Generation using Hierarchical Oracles T2 - Proc. MICCAI Workshop on Mesh Processing in Medical Image Analysis (MeshMed) Y1 - 2012 VL - 7599 SP - 101 EP - 111 ER - TY - GEN A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes N2 - We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements. T3 - ZIB-Report - 13-38 KW - digitally reconstructed radiographs KW - volume rendering KW - mesh deformation KW - statistical shape and intensity models KW - image registration KW - GPU acceleration Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41896 SN - 1438-0064 ER - TY - JOUR A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy JF - IEEE Transactions on Visualization and Computer Graphics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-35928 VL - 19 IS - 12 SP - 2673 EP - 2682 ER - TY - JOUR A1 - Todt, Ingo A1 - Lamecker, Hans A1 - Ramm, Heiko A1 - Frenzel, Henning A1 - Wollenberg, Barbara A1 - Beleites, Thomas A1 - Zahnert, Thomas A1 - Thomas, Jan Peter A1 - Dazert, Stefan A1 - Ernst, Arneborg T1 - Entwicklung eines CT-Daten-basierten Vibrant-Bonebridge-Viewers JF - HNO N2 - Die Positionierung des B-FMT der Vibrant Bonebridge kann aufgrund der anatomischen Verhältnisse des Mastoids und der Größe des Aktuators ohne eine vorherige Beurteilung der individuellen Computertomographie (CT) des Felsenbeins problematisch sein. Die Entwicklung eines einfach zu bedienenden Viewers, welcher eine Positionierung des B-FMT im Felsenbeinmodell ermöglicht und hier auf individuelle potenzielle anatomische Konflikte hinweist sowie Lösungsmöglichkeiten anbietet, kann ein hilfreiches Werkzeug zur präoperativen Positionierung sein. Ziel der Arbeit war die Definition von Anforderungen und die Anfertigung eines Prototyps eines Vibrant-Bonebridge-Viewers. Auf der Basis einer ZIBAmira-Software-Version und der Inklusion eines B-FMT-Modells unter Erstellung eines Felsenbeinmodells, welches die intuitive Beurteilung von Konflikten ermöglicht, erfolgte die Erstellung des Prototyps eines Vibrant-Bonebridge-Viewers.Ergebnisse. Die Segmentierungszeit der individuellen DICOM-Daten („digital imaging and communications in medicine“) beträgt etwa 5 min. Eine Positionierung im individuellen 3-D-Felsenbeinmodell ermöglicht die quantitative und qualitative Beurteilung von Konflikten (Sinus sigmoideus, mittlere Schädelgrube) und das Aufsuchen einer bevorzugten Position. Das Anheben des B-FMT mittels virtueller Unterlegscheiben kann simuliert werden. Der erstellte Vibrant-Bonebridge-Viewer ermöglicht verlässlich eine Simulation der B-FMT-Positionierung. Die klinische Anwendbarkeit muss evaluiert werden. Y1 - 2014 U6 - https://doi.org/10.1007/s00106-014-2851-3 VL - 62 SP - 439 EP - 442 PB - Springer ER -