TY - GEN A1 - Krumke, Sven A1 - Rambau, Jörg T1 - Probieren geht über Studieren? Entscheidungshilfen für kombinatorische Online-Optimierungsprobleme in der innerbetrieblichen Logistik N2 - Die Automatisierung von innerbetrieblicher Logistik erfordert -- über die physikalische Steuerung von Geräten hinaus -- auch eine effiziente Organisation der Transporte: ein Aufgabenfeld der kombinatorischen Optimierung. Dieser Artikel illustriert anhand von konkreten Aufgabenstellungen die Online-Problematik (unvollständiges Wissen) sowie die Echtzeit-Problematik (beschränkte Rechenzeit), auf die man in der innerbetrieblichen Logistik trifft. Der Text gibt einen Überblick über allgemeine Konstruktionsprinzipien für Online-Algorithmen und Bewertungsmethoden, die bei der Entscheidung helfen, welche Algorithmen für eine vorliegende Problemstellung geeignet sind. T3 - ZIB-Report - 02-05 KW - Logistik KW - Hochregallagerbediengeräte KW - Kommissioniermobile KW - Aufzüge KW - Online-Optimierung KW - Echtzeit-Optimierung KW - Simulation KW - kompetitive Analyse Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6723 ER - TY - GEN A1 - Krumke, Sven A1 - Paepe, Willem de A1 - Rambau, Jörg A1 - Stougie, Leen T1 - Online Bin-Coloring N2 - We introduce a new problem that was motivated by a (more complicated) problem arising in a robotized assembly enviroment. The bin coloring problem is to pack unit size colored items into bins, such that the maximum number of different colors per bin is minimized. Each bin has size~$B\in\mathbb{N}$. The packing process is subject to the constraint that at any moment in time at most $q\in\mathbb{N}$ bins may be partially filled. Moreover, bins may only be closed if they are filled completely. An online algorithm must pack each item must be packed without knowledge of any future items. We investigate the existence of competitive online algorithms for the online uniform binpacking problem. We show upper bounds for the bin coloring problem. We prove an upper bound of $3q$ - 1 and a lower bound of $2q$ for the competitive ratio of a natural greedy-type algorithm, and show that surprisingly a trivial algorithm which uses only one open bin has a strictly better competitive ratio of $2q$ - 1. Morever, we show that any deterministic algorithm has a competitive ratio $\Omega (q)$ and that randomization does not improve this lower bound even when the adversary is oblivious. T3 - ZIB-Report - 01-07 KW - Online Optimization KW - randomized algorithms KW - lower bounds KW - competitive analysis Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6338 ER - TY - GEN A1 - Krumke, Sven A1 - Lipmann, Maarten A1 - Paepe, Willem de A1 - Poensgen, Diana A1 - Rambau, Jörg A1 - Stougie, Leen A1 - Woeginger, Gerhard T1 - How to Cut a Cake Almost Fairly N2 - In the cake cutting problem, $n\ge2$ players want to cut a cake into $n$ pieces so that every player gets a ``fair'' share of the cake by his own measure. We describe a protocol with $n-1$~cuts in which each player can enforce to get a share of at least~$1/(2n-2)$. Moreover we show that no protocol with $n-1$~cuts can guarantee a better fraction. T3 - ZIB-Report - 02-23 KW - Fair division KW - cake cutting Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6905 ER - TY - CHAP A1 - Hülsermann, Ralf A1 - Jäger, Monika A1 - Poensgen, Diana A1 - Krumke, Sven A1 - Rambau, Jörg A1 - Tuchscherer, Andreas ED - Cinkler, Tibor ED - Jakab, Tivadar ED - Tapolcai, Jànos ED - Gàspàr, Csaba T1 - Dynamic routing algorithms in transparent optical networks T2 - Proceedings of the 7th IFIP Working Conference on Optical Network Design & Modelling (ONDM 2003) Y1 - 2003 UR - http://opus.kobv.de/zib/volltexte/2002/703/ SP - 293 EP - 312 PB - Kluwer Academic Press ER - TY - GEN A1 - Hülsermann, Ralf A1 - Jäger, Monika A1 - Krumke, Sven A1 - Poensgen, Diana A1 - Rambau, Jörg A1 - Tuchscherer, Andreas T1 - Dynamic Routing Algorithms in Transparent Optical Networks An Experimental Study Based on Real Data N2 - Today's telecommunication networks are configured statically. Whenever a connection is established, the customer has permanent access to it. However, it is observed that usually the connection is not used continuously. At this point, dynamic provisioning could increase the utilization of network resources. WDM based Optical Transport Networks (OTNs) will shortly allow for fast dynamic network reconfiguration. This enables optical broadband leased line services on demand. Since service requests competing for network resources may lead to service blocking, it is vital to use appropriate strategies for routing and wavelength assignment in transparent optical networks. We simulate the service blocking probabilities of various dynamic algorithms for this problem using a well-founded traffic model for two realistic networks. One of the algorithms using shortest path routings performs best on all instances. Surprisingly, the tie-breaking rule between equally short paths in different wavelengths decides between success or failure. T3 - ZIB-Report - 02-35 KW - Dynamic Network Configuration KW - Routing and Wavelength Allocation KW - Transparent Optical Networks KW - Blocking Probability KW - Simulation Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7025 ER - TY - GEN A1 - Huber, Birkett A1 - Rambau, Jörg A1 - Santos, Francisco T1 - The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings N2 - In 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimination theory: he established an order-preserving bijection between the posets of \emph{coherent} mixed subdivisions of a Minkowski sum $\mathcal{A}_1+\cdots+\mathcal{A}_r$ of point configurations and of \emph{coherent} polyhedral subdivisions of the associated Cayley embedding $\mathcal{C}(\mathcal{A}_1,\dots,\mathcal{A}_r)$. In this paper we extend this correspondence in a natural way to cover also \emph{non-coherent} subdivisions. As an application, we show that the Cayley Trick combined with results of Santos on subdivisions of Lawrence polytopes provides a new independent proof of the Bohne-Dress Theorem on zonotopal tilings. This application uses a combinatorial characterization of lifting subdivisions, also originally proved by Santos. T3 - ZIB-Report - SC-98-44 KW - Polyhedral subdivision KW - fiber polytope KW - mixed subdivision KW - lifting subdivision KW - Minkowski sum KW - Cayley Trick KW - Bohne-Dress Theorem Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3874 ER - TY - GEN A1 - Hiller, Benjamin A1 - Krumke, Sven A1 - Rambau, Jörg T1 - Reoptimization Gaps versus Model Errors in Online-Dispatching of Service Units for ADAC N2 - Under high load, the automated dispatching of service vehicles for the German Automobile Association (ADAC) must reoptimize a dispatch for 100--150 vehicles and 400 requests in about ten seconds to near optimality. In the presence of service contractors, this can be achieved by the column generation algorithm ZIBDIP. In metropolitan areas, however, service contractors cannot be dispatched automatically because they may decline. The problem: a model without contractors yields larger optimality gaps within ten seconds. One way-out are simplified reoptimization models. These compute a short-term dispatch containing only some of the requests: unknown future requests will influence future service anyway. The simpler the models the better the gaps, but also the larger the model error. What is more significant: reoptimization gap or reoptimization model error? We answer this question in simulations on real-world ADAC data: only the new model ZIBDIP{\footnotesize dummy} can keep up with ZIBDIP. T3 - ZIB-Report - 04-17 KW - vehicle dispatching KW - soft time windows KW - online KW - real-time KW - ADAC KW - optimality gap KW - high load Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7928 ER - TY - JOUR A1 - Hiller, Benjamin A1 - Krumke, Sven A1 - Rambau, Jörg T1 - Reoptimization Gaps versus Model Errors in Online-Dispatching of Service Units for ADAC JF - DISAM Y1 - 2006 VL - 154 IS - 13 SP - 1897 EP - 1907 ER - TY - CHAP A1 - Hiller, Benjamin A1 - Krumke, Sven A1 - Rambau, Jörg ED - Liebling, T. ED - Duran, G. ED - Matamala, M. T1 - Reoptimization Gaps versus Model Errors in Online-Dispatching of Service Units for ADAC T2 - Latin-American Conference on Combinatorics, Graphs and Applications, Santiago de Chile 2004 Y1 - 2004 VL - 18 SP - 157 EP - 163 ER - TY - GEN A1 - Heinz, Stefan A1 - Krumke, Sven A1 - Megow, Nicole A1 - Rambau, Jörg A1 - Tuchscherer, Andreas A1 - Vredeveld, Tjark T1 - The Online Target Date Assignment Problem N2 - Many online problems encountered in real-life involve a two-stage decision process: upon arrival of a new request, an irrevocable first-stage decision (the assignment of a specific resource to the request) must be made immediately, while in a second stage process, certain ``subinstances'' (that is, the instances of all requests assigned to a particular resource) can be solved to optimality (offline) later. We introduce the novel concept of an \emph{Online Target Date Assignment Problem} (\textsc{OnlineTDAP}) as a general framework for online problems with this nature. Requests for the \textsc{OnlineTDAP} become known at certain dates. An online algorithm has to assign a target date to each request, specifying on which date the request should be processed (e.\,g., an appointment with a customer for a washing machine repair). The cost at a target date is given by the \emph{downstream cost}, the optimal cost of processing all requests at that date w.\,r.\,t.\ some fixed downstream offline optimization problem (e.\,g., the cost of an optimal dispatch for service technicians). We provide general competitive algorithms for the \textsc{OnlineTDAP} independently of the particular downstream problem, when the overall objective is to minimize either the sum or the maximum of all downstream costs. As the first basic examples, we analyze the competitive ratios of our algorithms for the par ticular academic downstream problems of bin-packing, nonpreemptive scheduling on identical parallel machines, and routing a traveling salesman. T3 - ZIB-Report - 05-61 KW - Online Algorithms KW - Online Target Date Assignment Problem Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8945 ER -