TY - GEN A1 - Giovanidis, Anastasios A1 - Pulaj, Jonad T1 - The Multiperiod Network Design Problem: Lagrangian-based Solution Approaches N2 - We present and prove a theorem which gives the optimal dual vector for which a Lagrangian dual problem in the Single Period Design Problem (SPDP) is maximized. Furthermore we give a straightforward generalization to the Multi-Period Design Problem (MPDP). Based on the optimal dual values derived we compute the solution of the Lagrangian relaxation and compare it with the linear relaxation and optimal IP values. T3 - ZIB-Report - 11-31 KW - Network Design KW - Lagrangian Relaxation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13367 ER - TY - GEN A1 - D'Andreagiovanni, Fabio A1 - Mett, Fabian A1 - Pulaj, Jonad T1 - An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design N2 - We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks integrating wired and wireless technologies. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage represented through signal-to-interference ratios. Since the problem can prove very challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic that combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver. T3 - ZIB-Report - 15-62 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57139 SN - 1438-0064 ER - TY - CHAP A1 - D'Andreagiovanni, Fabio A1 - Krolikowski, Jonatan A1 - Pulaj, Jonad T1 - A hybrid primal heuristic for Robust Multiperiod Network Design T2 - EvoApplications 2014 Y1 - 2014 ER - TY - CHAP A1 - D'Andreagiovanni, Fabio A1 - Mett, Fabian A1 - Pulaj, Jonad T1 - An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design T2 - EvoApplications: European Conference on the Applications of Evolutionary Computation. Applications of Evolutionary Computation. 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 -- April 1, 2016, Proceedings, Part I N2 - We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks integrating wired and wireless technologies. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage represented through signal-to-interference ratios. Since the problem can prove very challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic that combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver. Y1 - 2016 U6 - https://doi.org/10.1007/978-3-319-31204-0_19 VL - 9597 SP - 283 EP - 298 ER - TY - GEN A1 - Pulaj, Jonad A1 - Raymond, Annie A1 - Theis, Dirk T1 - New Conjectures For Union-Closed Families N2 - The Frankl conjecture, also known as the union-closed sets conjecture, states that there exists an element in at least half of the sets of any (non-empty) union-closed family. From an optimization point of view, one could instead prove that 2a is an upper bound to the number of sets in a union-closed family with n elements where each element is in at most a sets, where a and n are non-negative integers. Formulating these problems as integer programs we observe that computed optimal values do not vary with n. We formalize these observations as conjectures, and show that they are not equivalent to the Frankl conjecture while still having wide-reaching implications if proven true. Finally, we partially prove the new conjectures and discuss possible approaches to solve them completely. T3 - ZIB-Report - 15-57 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56804 SN - 1438-0064 ER - TY - GEN A1 - D'Andreagiovanni, Fabio A1 - Krolikowski, Jonatan A1 - Pulaj, Jonad T1 - A hybrid primal heuristic for Robust Multiperiod Network Design N2 - We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap. T3 - ZIB-Report - 13-78 KW - Multiperiod Network Design, Traffic Uncertainty, Robust Optimization, Multiband Robustness, Hybrid Heuristics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-44081 SN - 1438-0064 ER - TY - GEN A1 - D'Andreagiovanni, Fabio A1 - Krolikowski, Jonatan A1 - Pulaj, Jonad T1 - A Fast Hybrid Primal Heuristic for Multiband Robust Capacitated Network Design with Multiple Time Periods N2 - We investigate the Robust Multiperiod Network Design Problem, a generalization of the Capacitated Network Design Problem (CNDP) that, besides establishing flow routing and network capacity installation as in a canonical CNDP, also considers a planning horizon made up of multiple time periods and protection against fluctuations in traffic volumes. As a remedy against traffic volume uncertainty, we propose a Robust Optimization model based on Multiband Robustness (Büsing and D'Andreagiovanni, 2012), a refinement of classical Gamma-Robustness by Bertsimas and Sim (2004) that uses a system of multiple deviation bands. Since the resulting optimization problem may prove very challenging even for instances of moderate size solved by a state-of-the-art optimization solver, we propose a hybrid primal heuristic that combines a randomized fixing strategy inspired by ant colony optimization and an exact large neighbourhood search. Computational experiments on a set of realistic instances from the SNDlib (2010) show that our original heuristic can run fast and produce solutions of extremely high quality associated with low optimality gaps. T3 - ZIB-Report - 14-40 KW - Capacitated Network Design KW - Multiperiod Design KW - Multiband Robust Optimization KW - Traffic Uncertainty KW - Metaheuristic KW - Ant Colony Optimization KW - Exact Large Neighborhood Search Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52862 SN - 1438-0064 ER - TY - JOUR A1 - D'Andreagiovanni, Fabio A1 - Krolikowski, Jonatan A1 - Pulaj, Jonad T1 - A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods JF - Applied Soft Computing N2 - We investigate the Robust Multiperiod Network Design Problem, a generalization of the Capacitated Network Design Problem (CNDP) that, besides establishing flow routing and network capacity installation as in a canonical CNDP, also considers a planning horizon made up of multiple time periods and protection against fluctuations in traffic volumes. As a remedy against traffic volume uncertainty, we propose a Robust Optimization model based on Multiband Robustness (Büsing and D'Andreagiovanni, 2012), a refinement of classical Gamma-Robustness by Bertsimas and Sim (2004) that uses a system of multiple deviation bands. Since the resulting optimization problem may prove very challenging even for instances of moderate size solved by a state-of-the-art optimization solver, we propose a hybrid primal heuristic that combines a randomized fixing strategy inspired by ant colony optimization and an exact large neighbourhood search. Computational experiments on a set of realistic instances from the SNDlib (2010) show that our original heuristic can run fast and produce solutions of extremely high quality associated with low optimality gaps. Y1 - 2014 U6 - https://doi.org/10.1016/j.asoc.2014.10.016 VL - 26 SP - 497 EP - 507 ER - TY - JOUR A1 - D'Andreagiovanni, Fabio A1 - Mett, Fabian A1 - Nardin, Antonella A1 - Pulaj, Jonad T1 - Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks JF - Applied Soft Computing N2 - This study investigates how to model and solve the problem of optimally designing FTTx telecommunications access networks integrating wired and wireless technologies, while taking into account the uncertainty of wireless signal propagation. We propose an original robust optimization model for the related robust 3-architecture Connected Facility Location problem, which includes additional variables and constraints to model wireless signal coverage represented through signal-to-interference ratios. Since the resulting robust problem can prove very challenging even for a modern state-of-the art optimization solver, we propose to solve it by an original primal heuristic that combines a probabilistic variable fixing procedure, guided by peculiar Linear Programming relaxations, with a Mixed Integer Programming heuristic, based on an exact very large neighborhood search. A numerical study carried out on a set of realistic instances show that our heuristic can find solutions of much higher quality than a state-of-the-art solver. Y1 - 2017 U6 - https://doi.org/10.1016/j.asoc.2017.07.018 VL - 61 SP - 1074 EP - 1087 ER - TY - JOUR A1 - Pulaj, Jonad T1 - Cutting planes for families implying Frankl's conjecture JF - Mathematics of Computation N2 - We find previously unknown families of sets which ensure Frankl's conjecture holds for all families that contain them using an algorithmic framework. The conjecture states that for any nonempty finite union-closed (UC) family there exists an element of the ground set in at least half the sets of the considered UC family. Poonen's Theorem characterizes the existence of weights which determine whether a given UC family implies the conjecture for all UC families which contain it. We design a cutting-plane method that computes the explicit weights which satisfy the existence conditions of Poonen's Theorem. This method enables us to answer several open questions regarding structural properties of UC families, including the construction of a counterexample to a conjecture of Morris from 2006. Y1 - 2019 U6 - https://doi.org/10.1090/mcom/3461 ER - TY - GEN A1 - Eifler, Leon A1 - Gleixner, Ambros A1 - Pulaj, Jonad T1 - Chvátal’s Conjecture Holds for Ground Sets of Seven Elements N2 - We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used. T3 - ZIB-Report - 18-49 KW - extremal combinatorics KW - exact rational integer programming Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70240 SN - 1438-0064 ER - TY - THES A1 - Pulaj, Jonad T1 - Cutting Planes for Union-Closed Families N2 - Frankl’s (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given UC family ensures Frankl’s conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl’s conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind. Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl’s conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families. Y1 - 2017 UR - https://depositonce.tu-berlin.de//handle/11303/7258 ER - TY - GEN A1 - Pulaj, Jonad T1 - Cutting Planes for Families Implying Frankl's Conjecture N2 - We find previously unknown families which imply Frankl’s conjecture using an algorithmic framework. The conjecture states that for any non-empty union-closed (or Frankl) family there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given Frankl family implies the conjecture for all Frankl families which contain it. A Frankl family is Non–Frankl-Complete (Non–FC), if it does not imply the conjecture in its elements for some Frankl family that contains it. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem. This method allows us to find a counterexample to a ten-year-old conjecture by R. Morris about the structure of generators for Non–FC-families. T3 - ZIB-Report - 16-51 KW - extremal combinatorics, extremal set theory, cutting plane, exact integer programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60626 SN - 1438-0064 ER - TY - GEN A1 - Eifler, Leon A1 - Gleixner, Ambros A1 - Pulaj, Jonad T1 - A Safe Computational Framework for Integer Programming applied to Chvátal's Conjecture N2 - We describe a general and safe computational framework that provides integer programming results with the degree of certainty that is required for machine-assisted proofs of mathematical theorems. At its core, the framework relies on a rational branch-and-bound certificate produced by an exact integer programming solver, SCIP, in order to circumvent floating-point roundoff errors present in most state-of-the-art solvers for mixed-integer programs. The resulting certificates are self-contained and checker software exists that can verify their correctness independently of the integer programming solver used to produce the certificate. This acts as a safeguard against programming errors that may be present in complex solver software. The viability of this approach is tested by applying it to finite cases of Chvátal's conjecture, a long-standing open question in extremal combinatorics. We take particular care to verify also the correctness of the input for this specific problem, using the Coq formal proof assistant. As a result we are able to provide a first machine-assisted proof that Chvátal's conjecture holds for all downsets whose union of sets contains seven elements or less. T3 - ZIB-Report - 21-35 KW - exact rational mixed integer programming KW - extremal combinatorics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84444 SN - 1438-0064 ER - TY - JOUR A1 - Eifler, Leon A1 - Gleixner, Ambros A1 - Pulaj, Jonad T1 - A Safe Computational Framework for Integer Programming applied to Chvátal's Conjecture JF - ACM Transactions on Mathematical Software N2 - We describe a general and safe computational framework that provides integer programming results with the degree of certainty that is required for machine-assisted proofs of mathematical theorems. At its core, the framework relies on a rational branch-and-bound certificate produced by an exact integer programming solver, SCIP, in order to circumvent floating-point roundoff errors present in most state-of-the-art solvers for mixed-integer programs.The resulting certificates are self-contained and checker software exists that can verify their correctness independently of the integer programming solver used to produce the certificate. This acts as a safeguard against programming errors that may be present in complex solver software. The viability of this approach is tested by applying it to finite cases of Chvátal's conjecture, a long-standing open question in extremal combinatorics. We take particular care to verify also the correctness of the input for this specific problem, using the Coq formal proof assistant. As a result we are able to provide a first machine-assisted proof that Chvátal's conjecture holds for all downsets whose union of sets contains seven elements or less. Y1 - 2022 U6 - https://doi.org/10.1145/3485630 VL - 48 IS - 2 ER -