TY - GEN A1 - Kober, Cornelia A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian A1 - Prohaska, Steffen A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Anisotrope Materialmodellierung für den menschlichen Unterkiefer N2 - Im Rahmen der biomechanischen Simulation knöcherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungelöst. Computertomographische Datensätze liefern eine räumliche Verteilung der (Röntgen-)Dichte und ermöglichen damit eine gute Darstellung der individuellen Geometrie. Weiter können die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsabängige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz für eine anisotrope Materialbeschreibung vorgestellt, die es ermöglicht, den Einfluss der individuellen knöchernen Struktur auf das makroskopische Materialverhalten abzuschätzen. T3 - ZIB-Report - 01-31 KW - menschlicher Unterkiefer KW - Simulation mit der Methode der finiten Elemente KW - innerer Aufbau des Knochens KW - anisotrope Elastizität Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6574 ER - TY - GEN A1 - Rosanwo, Olufemi A1 - Petz, Christoph A1 - Prohaska, Steffen A1 - Hotz, Ingrid A1 - Hege, Hans-Christian T1 - Dual Streamline Seeding - Method and Implementation N2 - This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces. N2 - In dieser Arbeit wird eine neue Strategie zur Platzierung von Stromlinien vorgestellt. Hierzu werden zusätzliche duale Stromlinien verwendet, die --im Gegensatz zur üblichen Definition-- orthogonal zum Vektorfeld verlaufen. Der vorgestellte Greedy-Algorithmus berechnet ein Netz aus orthogonalen Stromlinien, welches iterativ verfeinert wird, was zu einer guten Abdeckung der Domäne und einer gleichmäßigen Verteilung der Stromlinien führt. Es handelt sich um einen einfach zu implementierenden und effizienten Algorithmus, der direkt auf gekrümmten Oberflächen anwendbar ist. T3 - ZIB-Report - 08-49 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11032 SN - 1438-0064 ER - TY - GEN A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Ebell, Gino A1 - Ehrig, Karsten A1 - Heyn, Andreas A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben N2 - Kurzfassung. Durch die Alkalität des Betons wird Betonstahl dauerhaft vor Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quantifizierung des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesentlicher Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Korrosionsprodukt (Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung unterschieden werden muss. Diese Segmentierung bildet die Grundlage für statistische Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Aufgrund der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durchführbar, so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich, denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum. Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton diffuse Formen haben. Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerkennung durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halbautomatisch Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte Algorithmen auf ihre Eignung untersucht werden. T3 - ZIB-Report - 14-24 KW - Beton KW - Korrosionserkennung KW - Bildverarbeitung KW - Computertomografie KW - concrete KW - corrosiondetection KW - image processing KW - computed tomography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50912 SN - 1438-0064 ER - TY - GEN A1 - Redemann, Stefanie A1 - Weber, Britta A1 - Möller, Marit A1 - Verbavatz, Jean-Marc A1 - Hyman, Anthony A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Müller-Reichert, Thomas T1 - The Segmentation of Microtubules in Electron Tomograms Using Amira T2 - Mitosis: Methods and Protocols Y1 - 2014 U6 - https://doi.org/10.1007/978-1-4939-0329-0_12 SP - 261 EP - 278 PB - Springer ER - TY - GEN A1 - Costa, Marta A1 - Ostrovsky, Aaron D. A1 - Manton, James D. A1 - Prohaska, Steffen A1 - Jefferis, Gregory S.X.E. T1 - NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family databases T2 - bioRxiv preprint Y1 - 2015 U6 - https://doi.org/10.1101/006346 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. T3 - ZIB-Report - 17-62 KW - micro-CT KW - image segmentation KW - 2D distance map KW - hierarchical watershed KW - stingray KW - tesserae KW - biological tilings KW - Amira Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65785 SN - 1438-0064 ER - TY - CHAP A1 - Klindt, Marco A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian ED - Arnold, David ED - Kaminski, Jaime ED - Niccolucci, Franco ED - Stork, Andre T1 - Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition T2 - VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers Y1 - 2012 UR - http://diglib.eg.org/EG/DL/PE/VAST/VAST12S/025-028.pdf U6 - https://doi.org/10.2312/PE/VAST/VAST12S/025-028 SP - 25 EP - 28 PB - Eurographics Association CY - Brighton, UK ER - TY - CHAP A1 - Klindt, Marco A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - iCon.text – a customizable iPad app for kiosk applications in museum exhibitions T2 - EVA 2012 Berlin Y1 - 2012 SP - 150 EP - 155 PB - Gesellschaft zur Förderung angewandter Informatik e.V. CY - Volmerstraße 3, 12489 Berlin ER - TY - JOUR A1 - Saparin, Peter A1 - Thomsen, Jesper A1 - Prohaska, Steffen A1 - Zaikin, Alexei A1 - Kurths, Jürgen A1 - Hege, Hans-Christian A1 - Gowin, Wolfgang T1 - Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity JF - Acta Astronautica Y1 - 2005 U6 - https://doi.org/10.1016/j.actaastro.2005.01.007 VL - 56 IS - 9-12 SP - 820 EP - 830 ER - TY - CHAP A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Giehl, Michael A1 - Gowin, Wolfgang T1 - A Virtual Laboratory for Assessment of Bone Biopsies T2 - 14th IAA Humans in Space Symposium Y1 - 2003 SP - 7 CY - Banff, Alberta, Canada ER - TY - JOUR A1 - Prohaska, Steffen A1 - Dreher, Matthew A1 - Dewhirst, Mark A1 - Chilkoti, Ashutosh A1 - Pries, Axel T1 - 3-D reconstruction of tumor vascular networks JF - J. Vas. Res. Y1 - 2004 VL - 41 SP - 463 ER - TY - CHAP A1 - Prohaska, Steffen A1 - Hutanu, Andrei A1 - Kähler, Ralf A1 - Hege, Hans-Christian T1 - Interactive exploration of large remote micro-CT scans T2 - Proc. IEEE Visualization 2004 Y1 - 2004 U6 - https://doi.org/10.1109/VIS.2004.51 SP - 345 EP - 352 CY - Austin, Texas ER - TY - CHAP A1 - Fouard, Céline A1 - Malandain, Grégoire A1 - Prohaska, Steffen A1 - Westerhoff, Malte A1 - Cassot, Francis A1 - Mazel, Christophe A1 - Asselot, Didier A1 - Marc-Vergnes, Jean-Pierre T1 - Skeletonization by blocks for large 3D datasets: Application to brain microcirculation T2 - IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'04) Y1 - 2004 U6 - https://doi.org/10.1109/ISBI.2004.1398481 SP - 89 EP - 92 CY - Arlington, Virginia ER - TY - CHAP A1 - Fouard, Céline A1 - Malandain, Grégoire A1 - Prohaska, Steffen A1 - Westerhoff, Malte A1 - Cassot, Francis A1 - Mazel, Christophe A1 - Asselot, Didier A1 - Marc-Vergnes, Jean-Pierre T1 - Squelettisation par blocs pour des grands volumes de données 3D T2 - Reconnaissance des Formes et Intelligence Artificielle (RFIA 2004) Y1 - 2004 CY - Toulouse, France ER - TY - CHAP A1 - Prohaska, Steffen A1 - Hege, Hans-Christian ED - J. Moorhead, Robert ED - Gross, Markus ED - I. Joy, Kenneth T1 - Fast Visualization of Plane-Like Structures in Voxel Data T2 - Proceedings of IEEE Visualization 2002 Y1 - 2002 U6 - https://doi.org/10.1109/VISUAL.2002.1183753 SP - 29 EP - 36 PB - IEEE Computer Society Press CY - Boston MA, USA ER - TY - CHAP A1 - Hege, Hans-Christian A1 - Schirmacher, Hartmut A1 - Westerhoff, Malte A1 - Lamecker, Hans A1 - Prohaska, Steffen A1 - Zachow, Stefan T1 - From Image Data to Three-Dimensional Models - Case Studies on the Impact of 3D Patient Models T2 - Proceedings of the Japan Korea Computer Graphics Conference 2002 Y1 - 2002 PB - Kanazawa University CY - Kanazawa City, Ishikawa, Japan ER - TY - JOUR A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Giehl, Michael A1 - Gowin, Wolfgang T1 - Visual Analysis of Trabecular Bone Structure JF - Journal of Gravitational Physiology Y1 - 2002 VL - 9 (1) SP - 171 EP - 172 ER - TY - GEN A1 - Gowin, Wolfgang A1 - Saparin, Peter A1 - Felsenberg, Dieter A1 - Kurths, Jürgen A1 - Zaikin, Alexei A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Regional Structural Skeletal Discordance Assessed by Measures of Complexity Y1 - 2002 ER - TY - JOUR A1 - Zaikin, Alexei A1 - Saparin, Peter A1 - Prohaska, Steffen A1 - Kurths, Jürgen A1 - Gowin, Wolfgang T1 - Bone Modeling and Structural Measures of Complexity JF - Journal of Gravitational Physiology Y1 - 2002 U6 - https://doi.org/10.1016/j.actaastro.2005.01.007 VL - 9 SP - 175 EP - 176 ER - TY - JOUR A1 - Gowin, Wolfgang A1 - Saparin, Peter A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Felsenberg, Dieter T1 - Femoral Neck Fractures: Reasons for the Most Common Location of Fractures JF - Acta Orthop. Scand. (Suppl. 304) Y1 - 2002 VL - 73 SP - 26 ER - TY - CHAP A1 - Saparin, Peter A1 - Gowin, Wolfgang A1 - Zaikin, Alexei A1 - Thomsen, Jesper A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Kurths, Jürgen T1 - Quantification of Changes in Spatial Structure of Human Bone Biopsies Using 3D Measures of Complexity T2 - 14th IAA Humans in Space Symposium Y1 - 2003 CY - Banff, Alberta, Canada ER - TY - CHAP A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Giehl, Michael A1 - Gowin, Wolfgang T1 - Interactive Visualization to Support Quantification of Bone Biopsies T2 - 2nd European Congress ’Achievements in Space Medicine into Health Care Practice and Industry’ Y1 - 2003 CY - Berlin-Adlershof ER - TY - CHAP A1 - Saparin, Peter A1 - Gowin, Wolfgang A1 - Zaikin, Alexei A1 - Prohaska, Steffen T1 - Quantification of changes in human bone structure at different skeletal locations using measures of complexity T2 - 2nd European Congress ’Achievements in Space Medicine into Health Care Practice and Industry’ Y1 - 2003 CY - Berlin-Adlershof ER - TY - CHAP A1 - Gowin, Wolfgang A1 - Saparin, Peter A1 - Prohaska, Steffen A1 - Hege, Hans-Christian A1 - Belle, Stefan A1 - Felsenberg, Dieter T1 - Architectural Reasons for the Femoral Neck Fracture Location T2 - 2nd European Congress ’Achievements in Space Medicine into Health Care Practice and Industry’ Y1 - 2003 CY - Berlin-Adlershof ER - TY - CHAP A1 - Zaikin, Alexei A1 - Saparin, Peter A1 - Prohaska, Steffen A1 - Kurths, Jürgen A1 - Gowin, Wolfgang T1 - 2D and 3D bone modelling for analysis of changes in the bone architecture and for evaluation of structural measures. T2 - 2nd European Congress ’Achievements in Space Medicine into Health Care Practice and Industry’ Y1 - 2003 CY - Berlin-Adlershof ER - TY - CHAP A1 - Thomsen, Jesper A1 - Koller, Bruno A1 - Laib, Andreas A1 - Prohaska, Steffen A1 - Giehl, Michael A1 - Gowin, Wolfgang T1 - Comparison between Static Histomorphometric Measures Conducted by Traditionally 2D Histomorphometry and 3D μ-CT in Human Tibial Biopsies T2 - 2nd European Congress ’Achievements in Space Medicine into Health Care Practice and Industry’ Y1 - 2003 CY - Berlin-Adlershof ER - TY - CHAP A1 - Hege, Hans-Christian A1 - Weinkauf, Tino A1 - Prohaska, Steffen A1 - Hutanu, Andrei T1 - Distributed visualization and analysis of fluid dynamics data T2 - Proc. Fourth International Symposium on Advanced Fluid Information and Transdisciplinary Fluid Integration Y1 - 2004 SP - 145 EP - 150 CY - Sendai, Japan ER - TY - JOUR A1 - Rigort, Alexander A1 - Günther, David A1 - Hegerl, Reiner A1 - Baum, Daniel A1 - Weber, Britta A1 - Prohaska, Steffen A1 - Medalia, Ohad A1 - Baumeister, Wolfgang A1 - Hege, Hans-Christian T1 - Automated segmentation of electron tomograms for a quantitative description of actin filament networks JF - Journal of Structural Biology Y1 - 2012 U6 - https://doi.org/10.1016/j.jsb.2011.08.012 VL - 177 SP - 135 EP - 144 ER - TY - CHAP A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Kalbe, Ute A1 - Witt, Karl Josef T1 - Automatic Extraction and Analysis of Realistic Pore Structures from µCT Data for Pore Space Characterization of Graded Soil T2 - Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6) Y1 - 2012 SP - 345 EP - 352 ER - TY - JOUR A1 - Weber, Britta A1 - Greenan, Garrett A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Müller-Reichert, Thomas A1 - Hyman, Anthony A1 - Verbavatz, Jean-Marc T1 - Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos JF - Journal of Structural Biology Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S1047847711003509 U6 - https://doi.org/10.1016/j.jsb.2011.12.004 VL - 178 IS - 2 SP - 129 EP - 138 ER - TY - JOUR A1 - Kleinfeld, David A1 - Bharioke, Arjun A1 - Blinder, Pablo A1 - Bock, David A1 - Briggman, Kevin A1 - Chklovskii, Dmitri A1 - Denk, Winfried A1 - Helmstaedter, Moritz A1 - Kaufhold, John A1 - Lee, Wei-Chung A1 - Meyer, Hanno A1 - Micheva, Kristina A1 - Oberlaender, Marcel A1 - Prohaska, Steffen A1 - Reid, R. A1 - Smith, Stephen A1 - Takemura, Shinya A1 - Tsai, Philbert A1 - Sakmann, Bert T1 - Large-scale automated histology in the pursuit of connectomes JF - Journal of Neuroscience Y1 - 2011 UR - http://www.zib.de/prohaska/docs/Kleinfeld_JNS_Connectomes_2011.pdf U6 - https://doi.org/10.1523/JNEUROSCI.4077-11.2011 VL - 31 IS - 45 SP - 16125 EP - 16138 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Accelerated Visualization of Dynamic Molecular Surfaces JF - Comput. Graph. Forum Y1 - 2010 U6 - https://doi.org/10.1111/j.1467-8659.2009.01693.x VL - 29 SP - 943 EP - 952 ER - TY - CHAP A1 - Reininghaus, Jan A1 - Günther, David A1 - Hotz, Ingrid A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory T2 - Mathematical Software - ICMS 2010 Y1 - 2010 U6 - https://doi.org/10.1007/978-3-642-15582-6_35 VL - 6327 SP - 198 EP - 208 PB - Springer ER - TY - JOUR A1 - Kuß, Anja A1 - Gensel, Maria A1 - Meyer, Björn A1 - Dercksen, Vincent J. A1 - Prohaska, Steffen T1 - Effective Techniques to Visualize Filament-Surface Relationships JF - Comput. Graph. Forum Y1 - 2010 VL - 29 SP - 1003 EP - 1012 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials BT - Theory, Algorithms, and Applications T2 - Topological Methods in Data Analysis and Visualization III Y1 - 2014 U6 - https://doi.org/10.1007/978-3-319-04099-8_15 SP - 235 EP - 248 PB - Springer ER - TY - CHAP A1 - Rosanwo, Olufemi A1 - Petz, Christoph A1 - Prohaska, Steffen A1 - Hotz, Ingrid A1 - Hege, Hans-Christian ED - Eades, Peter ED - Ertl, Thomas ED - Shen, Han-Wei T1 - Dual Streamline Seeding T2 - Proceedings of the IEEE Pacific Visualization Symposium Y1 - 2009 SP - 9 EP - 16 CY - Beijing, China ER - TY - CHAP A1 - Homberg, Ulrike A1 - Binner, Richard A1 - Prohaska, Steffen A1 - Dercksen, Vincent J. A1 - Kuß, Anja A1 - Kalbe, Ute T1 - Determining Geometric Grain Structure from X-Ray Micro-Tomograms of Gradated Soil T2 - Workshop Internal Erosion Y1 - 2009 VL - 21 SP - 37 EP - 52 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Ebell, Gino T1 - 3D Corrosion Detection in Time-dependent CT Images of Concrete T2 - DIR-2015 Proceedings N2 - In civil engineering, the corrosion of steel reinforcements in structural elements of concrete bares a risk of stability-reduction, mainly caused by the exposure to chlorides. 3D computed tomography (CT) reveals the inner structure of concrete and allows one to investigate the corrosion with non-destructive testing methods. To carry out such investigations, specimens with a large artificial crack and an embedded steel rebar have been manufactured. 3D CT images of those specimens were acquired in the original state. Subsequently three cycles of electrochemical pre-damaging together with CT imaging were applied. These time series have been evaluated by means of image processing algorithms to segment and quantify the corrosion products. Visualization of the results supports the understanding of how corrosion propagates into cracks and pores. Furthermore, pitting of structural elements can be seen without dismantling. In this work, several image processing and visualization techniques are presented that have turned out to be particularly effective for the visualization and segmentation of corrosion products. Their combination to a workflow for corrosion analysis is the main contribution of this work. Y1 - 2015 UR - http://www.ndt.net/events/DIR2015/app/content/Paper/36_Paetsch.pdf ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials N2 - An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation. T3 - ZIB-Report - 13-56 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42510 SN - 1438-0064 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. T3 - ZIB-Report - 17-26 KW - trabecular structures KW - image-based analysis KW - additive manufacturing KW - printability Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64004 SN - 1438-0064 ER - TY - JOUR A1 - Redemann, Stefanie A1 - Baumgart, Johannes A1 - Lindow, Norbert A1 - Shelley, Michael A1 - Nazockdast, Ehssan A1 - Kratz, Andrea A1 - Prohaska, Steffen A1 - Brugués, Jan A1 - Fürthauer, Sebastian A1 - Müller-Reichert, Thomas T1 - C. elegans chromosomes connect to centrosomes by anchoring into the spindle network JF - Nature Communications N2 - The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15288 VL - 8 IS - 15288 ER - TY - JOUR A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data JF - Biomedical Physics & Engineering Express N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. Y1 - 2017 U6 - https://doi.org/10.1088/2057-1976/aa7611 VL - 3 IS - 3 PB - IOP Publishing ER - TY - GEN A1 - Zhukova, Yulia A1 - Hiepen, Christian A1 - Knaus, Petra A1 - Osterland, Marc A1 - Prohaska, Steffen A1 - Dunlop, John W. C. A1 - Fratzl, Peter A1 - Skorb, Ekaterina V. T1 - The role of titanium surface nanotopography on preosteoblast morphology, adhesion and migration N2 - Surface structuring of titanium-based implants with appropriate nanotopographies can significantly modulate their impact on the biological behavior of cells populating these implants. Implant assisted bone tissue repair and regeneration require functional adhesion and expansion of bone progenitors. The surface nanotopography of implant materials used to support bone healing and its effect on cell behavior, in particular cell adhesion, spreading, expansion, and motility, is still not clearly understood. The aim of this study is to investigate preosteoblast proliferation, adhesion, morphology, and migration on different titanium materials with similar surface chemistry, but distinct nanotopographical features. Sonochemical treatment and anodic oxidation were employed to fabricate disordered – mesoporous titania (TMS), and ordered – titania nanotubular (TNT) topographies respectively. The morphological evaluation revealed a surface dependent shape, thickness, and spreading of cells owing to different adherence behavior. Cells were polygonal-shaped and well-spread on glass and TMS, but displayed an elongated fibroblast-like morphology on TNT surfaces. The cells on glass however, were much flatter than on nanostructured surfaces. Both nanostructured surfaces impaired cell adhesion, but TMS was more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. Quantitative wound healing assay in combination with live-cell imaging revealed that cells seeded on TMS surfaces migrated in close proximity to neighboring cells and less directed when compared to the migratory behavior on other surfaces. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that could be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair. T3 - ZIB-Report - 17-06 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63053 SN - 1438-0064 ER - TY - JOUR A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Ebell, Gino A1 - Meinel, Dietmar A1 - Heyn, Andreas T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben JF - DGZfP-Jahrestagung 2014 Konferenzband Y1 - 2014 ER - TY - JOUR A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage JF - PLOS ONE N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0188018 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Zaslansky, Paul A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage (Supplementary Material) N2 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. In particular, sections from hyomandibulae harvested from specimens of round stingray Urobatis halleri, donated from another study (DOI: 10.1002/etc.2564). Specimens were from sub-adults/adults collected by beach seine from collection sites in San Diego and Seal Beach, California, USA. The hyomandibulae were mounted in clay, sealed in ethanol-humidified plastic tubes and scanned with a Skyscan 1172 desktop μCT scanner (Bruker μCT, Kontich, Belgium) in association with another study (DOI: 10.1111/joa.12508). Scans for all samples were performed with voxel sizes of 4.89 μm at 59 kV source voltage and 167 μA source current, over 360◦ sample 120 rotation. For our segmentations, the datasets were resampled to a voxel size of 9.78 μm to reduce the size of the images and speed up processing. In addition, the processed data that was generated with the visualization software Amira with techniques described in the related publication based on the mentioned specimens. Y1 - 2017 U6 - https://doi.org/10.12752/4.DKN.1.0 N1 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. ER - TY - GEN A1 - Lindow, Norbert A1 - Redemann, Stefanie A1 - Fabig, Gunar A1 - Müller-Reichert, Thomas A1 - Prohaska, Steffen T1 - Quantification of Three-Dimensional Spindle Architecture N2 - Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. Three-dimensional reconstruction of microtubules, however, is only the first step towards biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms. T3 - ZIB-Report - 18-07 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66562 SN - 1438-0064 ER - TY - JOUR A1 - Zhukova, Yulia A1 - Hiepen, Christian A1 - Knaus, Petra A1 - Osterland, Marc A1 - Prohaska, Steffen A1 - Dunlop, John W. C. A1 - Fratzl, Peter A1 - Skorb, Ekaterina V. T1 - The role of titanium surface nanotopography on preosteoblast morphology, adhesion and migration JF - Advanced Healthcare Materials N2 - Surface structuring of titanium-based implants with appropriate nanotopographies can significantly modulate their impact on the biological behavior of cells populating these implants. Implant assisted bone tissue repair and regeneration require functional adhesion and expansion of bone progenitors. The surface nanotopography of implant materials used to support bone healing and its effect on cell behavior, in particular cell adhesion, spreading, expansion, and motility, is still not clearly understood. The aim of this study is to investigate preosteoblast proliferation, adhesion, morphology, and migration on different titanium materials with similar surface chemistry, but distinct nanotopographical features. Sonochemical treatment and anodic oxidation were employed to fabricate disordered – mesoporous titania (TMS), and ordered – titania nanotubular (TNT) topographies respectively. The morphological evaluation revealed a surface dependent shape, thickness, and spreading of cells owing to different adherence behavior. Cells were polygonal-shaped and well-spread on glass and TMS, but displayed an elongated fibroblast-like morphology on TNT surfaces. The cells on glass however, were much flatter than on nanostructured surfaces. Both nanostructured surfaces impaired cell adhesion, but TMS was more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. Quantitative wound healing assay in combination with live-cell imaging revealed that cells seeded on TMS surfaces migrated in close proximity to neighboring cells and less directed when compared to the migratory behavior on other surfaces. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that could be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair. Y1 - 2017 U6 - https://doi.org/10.1002/adhm.201601244 ER - TY - CHAP A1 - Kaplan, Bernhard A1 - Buchmann, Jens A1 - Prohaska, Steffen A1 - Laufer, Jan T1 - Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography T2 - Proc. of SPIE, Photons Plus Ultrasound: Imaging and Sensing 2017 N2 - The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distributions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo models of the light transport are computationally expensive, but provide accurate fluence distributions predictions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar detection geometry. The combination of the optical and acoustic models is shown to account for limited-view artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the tissue phantom was estimated using a coordinate descent parameter search based on the comparison between measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 % compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood oxygenation from experimental data. Y1 - 2017 U6 - https://doi.org/10.1117/12.2251945 VL - 10064 SP - 100645J EP - 100645J-13 ER - TY - CHAP A1 - Buchmann, Jens A1 - Kaplan, Bernhard A1 - Prohaska, Steffen A1 - Laufer, Jan T1 - Experimental validation of a Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography T2 - Proc. of SPIE, Photons Plus Ultrasound: Imaging and Sensing N2 - Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo–based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values. Y1 - 2017 U6 - https://doi.org/10.1117/12.2252359 VL - 10064 SP - 1006416 EP - 1006416-8 ER -