TY - JOUR A1 - Betker, Andreas A1 - Gamrath, Inken A1 - Kosiankowski, Dirk A1 - Lange, Christoph A1 - Lehmann, Heiko A1 - Pfeuffer, Frank A1 - Simon, Felix A1 - Werner, Axel T1 - Comprehensive Topology and Traffic Model of a Nationwide Telecommunication Network JF - Journal of Optical Communications and Networking N2 - As a basis for meaningful simulation and optimization efforts with regard to traffic engineering or energy consumption in telecommunication networks, suitable models are indispensable. This concerns not only realistic network topologies but also models for the geographical distribution and the temporal dynamics of traffic, as well as the assumptions on network components and technology. This paper derives such a model from the practice of a large national carrier. Applying the network and traffic model, we demonstrate its use by presenting various optimization cases related to energy-efficient telecommunication. Here, we focus on load adaptivity by employing sleep modes to the network hardware, where several constraints on the reconfigurability of the network over time are considered. Y1 - 2014 U6 - https://doi.org/10.1364/JOCN.6.001038 VL - 6 IS - 11 SP - 1038 EP - 1047 ER - TY - GEN A1 - Betker, Andreas A1 - Gamrath, Inken A1 - Kosiankowski, Dirk A1 - Lange, Christoph A1 - Lehmann, Heiko A1 - Pfeuffer, Frank A1 - Simon, Felix A1 - Werner, Axel T1 - Comprehensive Topology and Traffic Model of a Nation-wide Telecommunication Network N2 - As a basis for meaningful simulation and optimization efforts with regard to traffic engineering or energy consumption in telecommunication networks, suitable models are indispensable. This concerns not only realistic network topologies, but also models for the geographical distribution and the temporal dynamics of traffic, as well as the assumptions on network components and technology. This paper derives such a model from the practice of a large national carrier. Applying the network and traffic model, we demonstrate its use by presenting various optimization cases related to energy-efficient telecommunication. Here, we focus on load-adaptivity by employing sleep modes to the network hardware, where several constraints on the reconfigurability of the network over time are considered. T3 - ZIB-Report - 14-36 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52670 SN - 1438-0064 ER -