TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Fare Planning for Public Transport N2 - In this paper we introduce the fare planning problem for public transport which consists in designing a system of fares maximizing revenue. We propose a new simple general model for this problem. It i s based on a demand function and constraints for the different fares. The constraints define the structure of the fare system, e.g., distance dependent fares or zone fares. We discuss a simple example with a quadratic demand function and distance dependent fares. Then we introduce a more realistic discrete choice model in which passengers choose between different alternatives depending on the numb er of trips per month. We demonstrate the examples by computational experiments. T3 - ZIB-Report - 05-20 KW - fare planning KW - demand function KW - discrete choice model Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8541 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - The Steiner Connectivity Problem N2 - The Steiner connectivity problem is a generalization of the Steiner tree problem. It consists in finding a minimum cost set of simple paths to connect a subset of nodes in an undirected graph. We show that polyhedral and algorithmic results on the Steiner tree problem carry over to the Steiner connectivity problem, namely, the Steiner cut and the Steiner partition inequalities, as well as the associated polynomial time separation algorithms, can be generalized. Similar to the Steiner tree case, a directed formulation, which is stronger than the natural undirected one, plays a central role. T3 - ZIB-Report - 09-07 KW - Steiner Tree KW - Partition Inequalities KW - Paths KW - Connectivity KW - Generalization Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11171 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Nonlinear pseudo-Boolean optimization: relaxation or propagation? N2 - Pseudo-Boolean problems lie on the border between satisfiability problems, constraint programming, and integer programming. In particular, nonlinear constraints in pseudo-Boolean optimization can be handled by methods arising in these different fields: One can either linearize them and work on a linear programming relaxation or one can treat them directly by propagation. In this paper, we investigate the individual strengths of these approaches and compare their computational performance. Furthermore, we integrate these techniques into a branch-and-cut-and-propagate framework, resulting in an efficient nonlinear pseudo-Boolean solver. T3 - ZIB-Report - 09-11 KW - Pseudo-Boolean KW - constraint integer programming KW - linear relaxation KW - separation algorithm KW - domain propagation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11232 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - The Line Connectivity Problem N2 - This paper introduces the "line connectivity problem", a generalization of the Steiner tree problem and a special case of the line planning problem. We study its complexity and give an IP formulation in terms of an exponential number of constraints associated with "line cut constraints". These inequalities can be separated in polynomial time. We also generalize the Steiner partition inequalities. T3 - ZIB-Report - 08-31 KW - Steiner Tree Generalization Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10820 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Pfetsch, Marc T1 - Detecting Orbitopal Symmetries N2 - Orbitopes can be used to handle symmetries which arise in integer programming formulations with an inherent assignment structure. We investigate the detection of symmetries appearing in this approach. We show that detecting so-called orbitopal symmetries is graph-isomorphism hard in general, but can be performed in linear time if the assignment structure is known. T3 - ZIB-Report - 08-33 KW - Symmetrie-Erkennung KW - Orbitope KW - Ganzzahlige Programmierung KW - Symmetrie-Brechung KW - Graphenisomorphie KW - symmetry detection KW - orbitopes KW - integer programming KW - symmetry breaking KW - graph ismorphism Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10842 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System N2 - Line planning is an important step in the strategic planning process of a public transportation system. In this paper, we discuss an optimization model for this problem in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the problem for path and tree network topologies as well as several categories of line operation that are important for the Quito Trolebus system. It turns out that, from a computational complexity worst case point of view, the problem is hard in all but the most simple variants. In practice, however, instances based on real data from the Trolebus System in Quito can be solved quite well, and significant optimization potentials can be demonstrated. T3 - ZIB-Report - 08-35 KW - line planning KW - computational complexity KW - public transport KW - integer programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10869 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - On the Line Planning Problem in Tree Networks N2 - We introduce an optimization model for the line planning problem in a public transportation system that aims at minimizing operational costs while ensuring a given level of quality of service in terms of available transport capacity. We discuss the computational complexity of the model for tree network topologies and line structures that arise in a real-world application at the Trolebus Integrated System in Quito. Computational results for this system are reported. T3 - ZIB-Report - 08-52 KW - line planning KW - computational complexity KW - public transport optimization Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11069 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System (Extended Abstract) N2 - Line planning is an important step in the strategic planning process of a public transportation system. In this paper, we discuss an optimization model for this problem in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the problem for path and tree network topologies as well as several categories of line operation that are important for the Quito Trolebus system. It turns out that, from a computational complexity worst case point of view, the problem is hard in all but the most simple variants. In practice, however, instances based on real data from the Trolebus System in Quito can be solved quite well, and significant optimization potentials can be demonstrated. T3 - ZIB-Report - 08-53 KW - line planning KW - computational complexity KW - public transport KW - integer programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11076 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Solving Pseudo-Boolean Problems with SCIP N2 - Pseudo-Boolean problems generalize SAT problems by allowing linear constraints and a linear objective function. Different solvers, mainly having their roots in the SAT domain, have been proposed and compared,for instance, in Pseudo-Boolean evaluations. One can also formulate Pseudo-Boolean models as integer programming models. That is,Pseudo-Boolean problems lie on the border between the SAT domain and the integer programming field. In this paper, we approach Pseudo-Boolean problems from the integer programming side. We introduce the framework SCIP that implements constraint integer programming techniques. It integrates methods from constraint programming, integer programming, and SAT-solving: the solution of linear programming relaxations, propagation of linear as well as nonlinear constraints, and conflict analysis. We argue that this approach is suitable for Pseudo-Boolean instances containing general linear constraints, while it is less efficient for pure SAT problems. We present extensive computational experiments on the test set used for the Pseudo-Boolean evaluation 2007. We show that our approach is very efficient for optimization instances and competitive for feasibility problems. For the nonlinear parts, we also investigate the influence of linear programming relaxations and propagation methods on the performance. It turns out that both techniques are helpful for obtaining an efficient solution method. T3 - ZIB-Report - 08-12 KW - Pseudo-Boolean KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Pseudo-Boolean KW - constraint integer programming KW - integer programming KW - branch-and-cut KW - optimization software Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10671 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Models for Fare Planning in Public Transport N2 - The optimization of fare systems in public transit allows to pursue objectives such as the maximization of demand, revenue, profit, or social welfare. We propose a non-linear optimization approach to fare planning that is based on a detailed discrete choice model of user behavior. The approach allows to analyze different fare structures, optimization objectives, and operational scenarios involving, e.g., subsidies. We use the resulting models to compute optimized fare systems for the city of Potsdam, Germany. T3 - ZIB-Report - 08-16 KW - Preisplanung KW - Nachfragefunktion KW - Optimierung KW - Nahverkehr Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10708 SN - 1438-0064 ER -