TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - GEN A1 - Hendel, Gregor A1 - Anderson, Daniel A1 - Le Bodic, Pierre A1 - Pfetsch, Marc T1 - Estimating the Size of Branch-And-Bound Trees N2 - This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP. T3 - ZIB-Report - 20-02 KW - mixed integer programming KW - machine learning KW - branch and bound KW - forecasting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78144 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Pfetsch, Marc T1 - Models for Fare Planning in Public Transport JF - Discrete Applied Mathematics Y1 - 2012 U6 - https://doi.org/10.1016/j.dam.2012.02.027 VL - 160 IS - 18 SP - 2591 EP - 2605 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Bastubbe, Michael A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Schubert, Christoph A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Walter, Matthias A1 - Wegscheider, Fabian A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 6.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 18-26 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69361 SN - 1438-0064 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc ED - Barnhart, Cynthia ED - Clausen, Uwe ED - Lauther, Ulrich ED - Möhring, Rolf T1 - Line Planning and Connectivity T2 - Models and Algorithms for Optimization in Logistics Y1 - 2009 IS - 09261 PB - Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany CY - Dagstuhl, Germany ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc ED - Haasis, Hans-Dietrich ED - Kopfer, Herbert ED - Schönberger, Jörn T1 - Optimal Fares for Public Transport T2 - Operations Research Proceedings 2005 Y1 - 2006 UR - {http://opus.kobv.de/zib/volltexte/2005/869/} SP - 29 EP - 36 PB - Springer-Verlag ER - TY - JOUR A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions JF - Optimization Methods and Software N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before. Y1 - 2014 U6 - https://doi.org/10.1080/10556788.2014.888426 PB - Taylor & Francis ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Pfetsch, Marc T1 - The Steiner connectivity problem JF - Mathematical Programming A Y1 - 2013 U6 - https://doi.org/10.1007/s10107-012-0564-5 VL - 142 IS - 1 SP - 133 EP - 167 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP T2 - Proceedings of the 9th Metaheuristics International Conference (MIC 2011) N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. Y1 - 2011 SN - 978-88-900984-3-7 SP - 51 EP - 60 ER -