TY - JOUR A1 - Maristany de las Casas, Pedro A1 - Kraus, Luitgard A1 - Sedeno-Noda, Antonio A1 - Borndörfer, Ralf T1 - Targeted multiobjective Dijkstra Algorithm JF - Networks N2 - We introduce the Targeted Multiobjective Dijkstra Algorithm (T-MDA), a label setting algorithm for the One-to-One Multiobjective Shortest Path (MOSP) Problem. It is based on the recently published Multiobjective Dijkstra Algorithm (MDA) and equips it with A*-like techniques. For any explored subpath, a label setting MOSP algorithm decides whether the subpath can be discarded or must be stored as part of the output. A major design choice is how to store subpaths from the moment they are first explored until the mentioned final decision can be made. The T-MDA combines the polynomially bounded size of the priority queue used in the MDA and alazy management of paths that are not in the queue. The running time bounds from the MDA remain valid. In practice, the T-MDA outperforms known algorithms from the literature and the increased memory consumption is negligible. In this paper, we benchmark the T-MDA against an improved version of the state of the art NAMOA∗drOne-to-One MOSP algorithm from the literature on a standard testbed. Y1 - 2023 U6 - https://doi.org/10.1002/net.22174 VL - 82 IS - 3 SP - 277 EP - 298 ER - TY - JOUR A1 - Maristany de las Casas, Pedro A1 - Sedeño-Noda, Antonio A1 - Borndörfer, Ralf T1 - New Dynamic Programming Algorithm for the Multiobjective Minimum Spanning Tree Problem JF - Arxiv Preprint N2 - The Multiobjective Minimum Spanning Tree (MO-MST) problem is a variant of the Minimum Spanning Tree problem, in which the costs associated with every edge of the input graph are vectors. In this paper, we design a new dynamic programming MO-MST algorithm. Dynamic programming for a MO-MST instance leads to the definition of an instance of the One-to-One Multiobjective Shortest Path (MOSP) problem and both instances have equivalent solution sets. The arising MOSP instance is defined on a so called transition graph. We study the original size of this graph in detail and reduce its size using cost dependent arc pruning criteria. To solve the MOSP instance on the reduced transition graph, we design the Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA), exploiting recent improvements on MOSP algorithms from the literature. All in all, the new IG-MDA outperforms the current state of the art on a big set of instances from the literature. Our code and results are publicly available. Y1 - 2023 U6 - https://doi.org/10.48550/arXiv.2306.16203 ER - TY - JOUR A1 - Maristany de las Casas, Pedro A1 - Sedeño-Noda, Antonio A1 - Borndörfer, Ralf A1 - Huneshagen, Max T1 - K-Shortest Simple Paths Using Biobjective Path Search JF - Arxiv Preprint N2 - In this paper we introduce a new algorithm for the k-Shortest Simple Paths (K-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roditty and Zwick (2012) that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem without specifying how this is done. We fill this gap using a novel approach: we turn the scalar 2-SSP into instances of the Biobjective Shortest Path problem. Our experiments on grid graphs and on road networks show that the new algorithm is very efficient in practice. Y1 - 2023 U6 - https://doi.org/10.48550/arXiv.2309.10377 ER -