TY - JOUR A1 - Bittracher, Andreas A1 - Koltai, Péter A1 - Klus, Stefan A1 - Banisch, Ralf A1 - Dellnitz, Michael A1 - Schütte, Christof T1 - Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics JF - Jounal of Nonlinear Science N2 - We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics. Y1 - 2018 U6 - https://doi.org/10.1007/s00332-017-9415-0 VL - 28 IS - 2 SP - 471 EP - 512 ER - TY - JOUR A1 - Klus, Stefan A1 - Schuster, Ingmar A1 - Muandet, Krikamol T1 - Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces JF - Journal of Machine Learning Research N2 - Transfer operators such as the Perron-Frobenius or Koopman operator play an important role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of conditional distributions, known as conditional mean embeddings in the machine learning community. Moreover, numerical methods to compute empirical estimates of these embeddings are akin to data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. In fact, most of the existing methods can be derived from our framework, providing a unifying view on the approximation of transfer operators. One main benefit of the presented kernel-based approaches is that these methods can be applied to any domain where a similarity measure given by a kernel is available. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. Y1 - 2017 ER - TY - JOUR A1 - Klus, Stefan A1 - Schütte, Christof T1 - Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator JF - Journal of Computational Dynamics N2 - The global behavior of dynamical systems can be studied by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with the system. Two important operators which are frequently used to gain insight into the system's behavior are the Perron-Frobenius operator and the Koopman operator. Due to the curse of dimensionality, computing the eigenfunctions of high-dimensional systems is in general infeasible. We will propose a tensor-based reformulation of two numerical methods for computing finite-dimensional approximations of the aforementioned infinite-dimensional operators, namely Ulam's method and Extended Dynamic Mode Decomposition (EDMD). The aim of the tensor formulation is to approximate the eigenfunctions by low-rank tensors, potentially resulting in a significant reduction of the time and memory required to solve the resulting eigenvalue problems, provided that such a low-rank tensor decomposition exists. Typically, not all variables of a high-dimensional dynamical system contribute equally to the system's behavior, often the dynamics can be decomposed into slow and fast processes, which is also reflected in the eigenfunctions. Thus, the weak coupling between different variables might be approximated by low-rank tensor cores. We will illustrate the efficiency of the tensor-based formulation of Ulam's method and EDMD using simple stochastic differential equations. Y1 - 2016 U6 - https://doi.org/10.3934/jcd.2016007 VL - 3 IS - 2 SP - 139 EP - 161 ER - TY - JOUR A1 - Klus, Stefan A1 - Koltai, Peter A1 - Schütte, Christof T1 - On the numerical approximation of the Perron-Frobenius and Koopman operator JF - Journal of Computational Dynamics N2 - Information about the behavior of dynamical systems can often be obtained by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with a dynamical system. Examples of such operators are the Perron-Frobenius and the Koopman operator. In this paper, we will review di� fferent methods that have been developed over the last decades to compute � infinite-dimensional approximations of these in� finite-dimensional operators - in particular Ulam's method and Extended Dynamic Mode Decomposition (EDMD) - and highlight the similarities and di� fferences between these approaches. The results will be illustrated using simple stochastic di� fferential equations and molecular dynamics examples. Y1 - 2016 U6 - https://doi.org/10.3934/jcd.2016003 VL - 3 IS - 1 SP - 51 EP - 77 ER - TY - JOUR A1 - Klus, Stefan A1 - Nüske, Feliks A1 - Koltai, Peter A1 - Wu, Hao A1 - Kevrekidis, Ioannis A1 - Schütte, Christof A1 - Noé, Frank T1 - Data-driven model reduction and transfer operator approximation JF - Journal of Nonlinear Science Y1 - 2018 UR - https://link.springer.com/article/10.1007/s00332-017-9437-7 U6 - https://doi.org/10.1007/s00332-017-9437-7 VL - 28 IS - 3 SP - 985 EP - 1010 ER - TY - JOUR A1 - Klus, Stefan A1 - Bittracher, Andreas A1 - Schuster, Ingmar A1 - Schütte, Christof T1 - A kernel-based approach to molecular conformation analysis JF - Journal of Chemical Physics N2 - We present a novel machine learning approach to understanding conformation dynamics of biomolecules. The approach combines kernel-based techniques that are popular in the machine learning community with transfer operator theory for analyzing dynamical systems in order to identify conformation dynamics based on molecular dynamics simulation data. We show that many of the prominent methods like Markov State Models, EDMD, and TICA can be regarded as special cases of this approach and that new efficient algorithms can be constructed based on this derivation. The results of these new powerful methods will be illustrated with several examples, in particular the alanine dipeptide and the protein NTL9. Y1 - 2018 U6 - https://doi.org/10.1063/1.5063533 VL - 149 IS - 24 ER - TY - JOUR A1 - Bittracher, Andreas A1 - Klus, Stefan A1 - Hamzi, Boumediene A1 - Schütte, Christof T1 - Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds JF - Journal of Nonlinear Science N2 - We present a novel kernel-based machine learning algorithm for identifying the low-dimensional geometry of the effective dynamics of high-dimensional multiscale stochastic systems. Recently, the authors developed a mathematical framework for the computation of optimal reaction coordinates of such systems that is based on learning a parameterization of a low-dimensional transition manifold in a certain function space. In this article, we enhance this approach by embedding and learning this transition manifold in a reproducing kernel Hilbert space, exploiting the favorable properties of kernel embeddings. Under mild assumptions on the kernel, the manifold structure is shown to be preserved under the embedding, and distortion bounds can be derived. This leads to a more robust and more efficient algorithm compared to the previous parameterization approaches. Y1 - 2021 U6 - https://doi.org/10.1007/s00332-020-09668-z VL - 31 ER - TY - GEN A1 - Mollenhauer, Mattes A1 - Schuster, Ingmar A1 - Klus, Stefan A1 - Schütte, Christof ED - Junge, Oliver ED - Schütze, O. ED - Froyland, Gary ED - Ober-Blobaum, S. ED - Padberg-Gehle, K. T1 - Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces T2 - Advances om Dynamics, Optimization and Computation. Series: Studies in Systems, Decision and Control. A volume dedicated to Michael Dellnitz on his 60th birthday Y1 - 2020 SN - 978-3-030-51264-4 U6 - https://doi.org/10.1007/978-3-030-51264-4_5 VL - 304 SP - 109 EP - 131 PB - Springer International ER - TY - JOUR A1 - Klus, Stefan A1 - Husic, Brooke E. A1 - Mollenhauer, Mattes A1 - Noe, Frank T1 - Kernel methods for detecting coherent structures in dynamical data JF - Chaos: An Interdisciplinary Journal of Nonlinear Science Y1 - 2019 U6 - https://doi.org/10.1063/1.5100267 VL - 29 IS - 12 ER - TY - JOUR A1 - Mollenhauer, Mattes A1 - Klus, Stefan A1 - Schütte, Christof A1 - Koltai, Péter T1 - Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence JF - Journal of Machine Learning Research N2 - We consider autocovariance operators of a stationary stochastic process on a Polish space that is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates of these operators converge along realizations of the process under various conditions. In particular, we examine ergodic and strongly mixing processes and obtain several asymptotic results as well as finite sample error bounds. We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities. Finally, we use our approach to examine the nonparametric estimation of Markov transition operators and highlight how our theory can give a consistency analysis for a large family of spectral analysis methods including kernel-based dynamic mode decomposition. Y1 - 2022 UR - https://jmlr.org/papers/v23/20-442.html VL - 23 IS - 327 SP - 1 EP - 34 ER - TY - GEN A1 - Schütte, Christof A1 - Klus, Stefan A1 - Hartmann, Carsten T1 - Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning N2 - One of the main challenges in molecular dynamics is overcoming the “timescale barrier”, a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject. T3 - ZIB-Report - 22-25 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88637 SN - 1438-0064 ER - TY - JOUR A1 - Gelss, Patrick A1 - Klus, Stefan A1 - Schuster, Ingmar A1 - Schütte, Christof T1 - Feature space approximation for kernel-based supervised learning JF - Knowledge-Based Sytems Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.knosys.2021.106935 VL - 221 PB - Elsevier ER - TY - JOUR A1 - Klus, Stefan A1 - Gelß, Patrick A1 - Peitz, Sebastian A1 - Schütte, Christof T1 - Tensor-based dynamic mode decomposition JF - Nonlinearity Y1 - 2018 U6 - https://doi.org/10.1088/1361-6544/aabc8f VL - 31 IS - 7 PB - IOP Publishing Ltd & London Mathematical Society ER - TY - JOUR A1 - Melnyk, Kateryna A1 - Montavon, Grègoire A1 - Klus, Stefan A1 - Conrad, Tim T1 - Graph Kernel Koopman Embedding for Human Microbiome Analysis JF - Applied Network Science N2 - More and more diseases have been found to be strongly correlated with disturbances in the microbiome constitution, e.g., obesity, diabetes, or some cancer types. Thanks to modern high-throughput omics technologies, it becomes possible to directly analyze human microbiome and its influence on the health status. Microbial communities are monitored over long periods of time and the associations between their members are explored. These relationships can be described by a time-evolving graph. In order to understand responses of the microbial community members to a distinct range of perturbations such as antibiotics exposure or diseases and general dynamical properties, the time-evolving graph of the human microbial communities has to be analyzed. This becomes especially challenging due to dozens of complex interactions among microbes and metastable dynamics. The key to solving this problem is the representation of the time-evolving graphs as fixed-length feature vectors preserving the original dynamics. We propose a method for learning the embedding of the time-evolving graph that is based on the spectral analysis of transfer operators and graph kernels. We demonstrate that our method can capture temporary changes in the time-evolving graph on both synthetic data and real-world data. Our experiments demonstrate the efficacy of the method. Furthermore, we show that our method can be applied to human microbiome data to study dynamic processes. Y1 - 2020 U6 - https://doi.org/10.1007/s41109-020-00339-2 VL - 5 IS - 96 ER - TY - JOUR A1 - Zhang, Wei A1 - Klus, Stefan A1 - Conrad, Tim A1 - Schütte, Christof T1 - Learning chemical reaction networks from trajectory data JF - SIAM Journal on Applied Dynamical Systems (SIADS) N2 - We develop a data-driven method to learn chemical reaction networks from trajectory data. Modeling the reaction system as a continuous-time Markov chain and assuming the system is fully observed,our method learns the propensity functions of the system with predetermined basis functions by maximizing the likelihood function of the trajectory data under l^1 sparse regularization. We demonstrate our method with numerical examples using synthetic data and carry out an asymptotic analysis of the proposed learning procedure in the infinite-data limit. Y1 - 2019 U6 - https://doi.org/10.1137/19M1265880 VL - 18 IS - 4 SP - 2000 EP - 2046 ER - TY - JOUR A1 - Gelß, Patrick A1 - Klus, Stefan A1 - Knebel, Sebastian A1 - Shakibaei, Zarin A1 - Pokutta, Sebastian T1 - Low-Rank Tensor Decompositions of Quantum Circuits JF - Journal of Computational Physics N2 - Quantum computing is arguably one of the most revolutionary and disruptive technologies of this century. Due to the ever-increasing number of potential applications as well as the continuing rise in complexity, the development, simulation, optimization, and physical realization of quantum circuits is of utmost importance for designing novel algorithms. We show how matrix product states (MPSs) and matrix product operators (MPOs) can be used to express certain quantum states, quantum gates, and entire quantum circuits as low-rank tensors. This enables the analysis and simulation of complex quantum circuits on classical computers and to gain insight into the underlying structure of the system. We present different examples to demonstrate the advantages of MPO formulations and show that they are more efficient than conventional techniques if the bond dimensions of the wave function representation can be kept small throughout the simulation. Y1 - 2022 ER - TY - JOUR A1 - Gelß, Patrick A1 - Klus, Stefan A1 - Eisert, Jens A1 - Schütte, Christof T1 - Multidimensional Approximation of Nonlinear Dynamical Systems JF - Journal of Computational and Nonlinear Dynamics N2 - A key task in the field of modeling and analyzing nonlinear dynamical systems is the recovery of unknown governing equations from measurement data only. There is a wide range of application areas for this important instance of system identification, ranging from industrial engineering and acoustic signal processing to stock market models. In order to find appropriate representations of underlying dynamical systems, various data-driven methods have been proposed by different communities. However, if the given data sets are high-dimensional, then these methods typically suffer from the curse of dimensionality. To significantly reduce the computational costs and storage consumption, we propose the method multidimensional approximation of nonlinear dynamical systems (MANDy) which combines data-driven methods with tensor network decompositions. The efficiency of the introduced approach will be illustrated with the aid of several high-dimensional nonlinear dynamical systems. Y1 - 2019 U6 - https://doi.org/10.1115/1.4043148 VL - 14 IS - 6 ER - TY - JOUR A1 - Schütte, Christof A1 - Klus, Stefan A1 - Hartmann, Carsten T1 - Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning JF - Acta Numerica N2 - One of the main challenges in molecular dynamics is overcoming the ‘timescale barrier’: in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behaviour on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory, as well as the algorithmic development, from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in molecular dynamics. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject. Y1 - 2023 U6 - https://doi.org/10.1017/S0962492923000016 VL - 32 SP - 517 EP - 673 ER - TY - JOUR A1 - Klus, Stefan A1 - Djurdjevac Conrad, Natasa T1 - Koopman-based spectral clustering of directed and time-evolving graphs JF - Journal of Nonlinear Science N2 - While spectral clustering algorithms for undirected graphs are well established and have been successfully applied to unsupervised machine learning problems ranging from image segmentation and genome sequencing to signal processing and social network analysis, clustering directed graphs remains notoriously difficult. Two of the main challenges are that the eigenvalues and eigenvectors of graph Laplacians associated with directed graphs are in general complex-valued and that there is no universally accepted definition of clusters in directed graphs. We first exploit relationships between the graph Laplacian and transfer operators and in particular between clusters in undirected graphs and metastable sets in stochastic dynamical systems and then use a generalization of the notion of metastability to derive clustering algorithms for directed and time-evolving graphs. The resulting clusters can be interpreted as coherent sets, which play an important role in the analysis of transport and mixing processes in fluid flows. Y1 - 2022 U6 - https://doi.org/10.1007/s00332-022-09863-0 VL - 33 ER - TY - GEN A1 - Bittracher, Andreas A1 - Koltai, Péter A1 - Klus, Stefan A1 - Banisch, Ralf A1 - Dellnitz, Michael A1 - Schütte, Christof T1 - Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics N2 - We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics. T3 - ZIB-Report - 17-22 KW - metastability KW - slow dynamics KW - effective dynamics KW - transition manifold KW - embedding KW - transfer operator KW - reaction coordinate Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63822 SN - 1438-0064 ER - TY - JOUR A1 - Niemann, Jan-Hendrik A1 - Klus, Stefan A1 - Schütte, Christof T1 - Data-driven model reduction of agent-based systems using the Koopman generator JF - PLOS ONE N2 - The dynamical behavior of social systems can be described by agent-based models. Although single agents follow easily explainable rules, complex time-evolving patterns emerge due to their interaction. The simulation and analysis of such agent-based models, however, is often prohibitively time-consuming if the number of agents is large. In this paper, we show how Koopman operator theory can be used to derive reduced models of agent-based systems using only simulation or real-world data. Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or stochastic differential equations. The new variables are, for instance, aggregated state variables of the agent-based model, modeling the collective behavior of larger groups or the entire population. Using benchmark problems with known coarse-grained models, we demonstrate that the obtained reduced systems are in good agreement with the analytical results, provided that the numbers of agents is sufficiently large. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0250970 VL - 16 IS - 5 ER - TY - GEN A1 - Niemann, Jan-Hendrik A1 - Schütte, Christof A1 - Klus, Stefan T1 - Simulation data: Data-driven model reduction of agent-based systems using the Koopman generator T2 - PLOS ONE Y1 - 2021 U6 - https://doi.org/http://doi.org/10.5281/zenodo.4522119 N1 - This repository contains the simulation data for the article "Data-driven model reduction of agent-based systems using the Koopman generator" by Jan-Hendrik Niemann, Stefan Klus and Christof Schütte. The archive complete_voter_model.zip contains the simulation results for the extended voter model on a complete graph for the parameters given in the corresponding txt-files to learn a reduced SDE model. The files are of the form [types, time steps, samples, training points].The archive dependency.zip contains additional simulation results of the form [types, time steps, samples, training points] to learn a reduced SDE model. The parameters used are given in the corresponding txt-files.The archive random_voter_model.zip contains the simulation results to learn a reduced SDE model for the given adjacency matrix within the archive. The file aggregate_state is of the form [training points, types, time steps, samples]. The file full_state is of the form [training points, agents, time steps, samples].The archive predator_prey_model.zip contains the simulation results to learn a reduced SDE model and calculation of the mean value of the agent-based model. The data is of the form [types, time steps, samples, training points] and [samples, time steps, types].The archive two_clustered_voter_model.zip contains the simulation results for the extended voter model on a graph with two clusters for the given adjacency matrices to learn a reduced SDE model. The file aggregate_state is of the form [training points, types, time steps, samples]. The file full_state is of the form [training points, agents, time steps, samples]. VL - 16 IS - 5 ER - TY - JOUR A1 - Klus, Stefan A1 - Nüske, Feliks A1 - Peitz, Sebastian A1 - Niemann, Jan-Hendrik A1 - Clementi, Cecilia A1 - Schütte, Christof T1 - Data-driven approximation of the Koopman generator: Model reduction, system identification, and control JF - Physica D: Nonlinear Phenomena Y1 - 2020 U6 - https://doi.org/10.1016/j.physd.2020.132416 VL - 406 ER - TY - JOUR A1 - Niemann, Jan-Hendrik A1 - Klus, Stefan A1 - Conrad, Natasa Djurdjevac A1 - Schütte, Christof T1 - Koopman-Based Surrogate Models for Multi-Objective Optimization of Agent-Based Systems JF - Physica D: Nonlinear Phenomena N2 - Agent-based models (ABMs) provide an intuitive and powerful framework for studying social dynamics by modeling the interactions of individuals from the perspective of each individual. In addition to simulating and forecasting the dynamics of ABMs, the demand to solve optimization problems to support, for example, decision-making processes naturally arises. Most ABMs, however, are non-deterministic, high-dimensional dynamical systems, so objectives defined in terms of their behavior are computationally expensive. In particular, if the number of agents is large, evaluating the objective functions often becomes prohibitively time-consuming. We consider data-driven reduced models based on the Koopman generator to enable the efficient solution of multi-objective optimization problems involving ABMs. In a first step, we show how to obtain data-driven reduced models of non-deterministic dynamical systems (such as ABMs) that depend on potentially nonlinear control inputs. We then use them in the second step as surrogate models to solve multi-objective optimal control problems. We first illustrate our approach using the example of a voter model, where we compute optimal controls to steer the agents to a predetermined majority, and then using the example of an epidemic ABM, where we compute optimal containment strategies in a prototypical situation. We demonstrate that the surrogate models effectively approximate the Pareto-optimal points of the ABM dynamics by comparing the surrogate-based results with test points, where the objectives are evaluated using the ABM. Our results show that when objectives are defined by the dynamic behavior of ABMs, data-driven surrogate models support or even enable the solution of multi-objective optimization problems. Y1 - 2024 U6 - https://doi.org/https://doi.org/10.1016/j.physd.2024.134052 VL - 460 SP - 134052 ER -