TY - GEN A1 - Berthold, Timo A1 - Hendel, Gregor T1 - Shift-And-Propagate N2 - For mixed integer programming, recent years have seen a growing interest in the design of general purpose primal heuristics for use inside complete solvers. Many of these heuristics rely on an optimal LP solution. Finding this may itself take a significant amount of time. The presented paper addresses this issue by the introduction of the Shift-And-Propagate heuristic. Shift-And-Propagate is a pre-root primal heuristic that does not require a previously found LP solution. It applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement of existing rounding and propagation heuristics. T3 - ZIB-Report - 13-03 KW - primal heuristic KW - mixed integer programming KW - domain propagation KW - rounding Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17596 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Hendel, Gregor T1 - Rounding and Propagation Heuristics for Mixed Integer Programming N2 - Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances. T3 - ZIB-Report - 11-29 KW - primal heuristic KW - mixed integer programming KW - domain propagation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13255 ER -