TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - Counting solutions of integer programs using unrestricted subtree detection N2 - In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection. T3 - ZIB-Report - 08-09 KW - Zählen KW - ganzzahlige Programme KW - IP KW - counting KW - integer programming KW - IP Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10632 SN - 1438-0064 ER - TY - CHAP A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten ED - Perron, Laurent ED - Trick, Michael T1 - Counting Solutions of Integer Programs Using Unrestricted Subtree Detection T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008 Y1 - 2008 UR - http://opus.kobv.de/zib/volltexte/2008/1092/ VL - 5015 SP - 278 EP - 282 PB - Springer ER - TY - GEN A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 N2 - This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic. T3 - ZIB-Report - 10-31 KW - Mixed Integer Programming KW - Problem Instances KW - IP KW - MIP KW - MIPLIB Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12953 ER - TY - JOUR A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 JF - Mathematical Programming Computation Y1 - 2011 UR - http://mpc.zib.de/index.php/MPC/article/view/56 U6 - https://doi.org/10.1007/s12532-011-0025-9 VL - 3 IS - 2 SP - 103 EP - 163 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - ParaSCIP - a parallel extension of SCIP N2 - Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer. T3 - ZIB-Report - 10-27 KW - massive parallization KW - mixed integer programming KW - ParaSCIP KW - branch-and-cut KW - branch-and-bound Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11921 UR - http://www.springerlink.com/content/t2160206253v7661/ ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten ED - Bischof, Christian ED - Hegering, Heinz-Gerd ED - Nagel, Wolfgang ED - Wittum, Gabriel T1 - ParaSCIP: a parallel extension of SCIP T2 - Competence in High Performance Computing 2010 Y1 - 2012 U6 - https://doi.org/10.1007/978-3-642-24025-6_12 SP - 135 EP - 148 PB - Springer ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving hard MIPLIB2003 problems with ParaSCIP on Supercomputers: An update N2 - Contemporary supercomputers can easily provide years of CPU time per wall-clock hour. One challenge of today's software development is how to harness this wast computing power in order to solve really hard mixed integer programming instances. In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in more than ten consecutive runs, restarting from checkpointing files. The contribution of this paper is threefold: For the first time, we present computational results of single runs for those two instances. Secondly, we provide new improved upper and lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we explain which new developments led to these results and discuss the current progress of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the Titan supercomputer, using up to 35,200 cores. T3 - ZIB-Report - 13-66 KW - Mixed Integer Programming KW - MIPLIB2003 KW - ParaSCIP KW - Ubiquity Generator Framework KW - Supercomputer Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42888 SN - 1438-0064 ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael ED - IEEE, T1 - Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update T2 - IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops Y1 - 2014 SN - 978-1-4799-4117-9 U6 - https://doi.org/10.1109/IPDPSW.2014.174 SP - 1552 EP - 1561 PB - IEEE Computer Society CY - Washington, DC, USA ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores T2 - Proc. of 30th IEEE International Parallel & Distributed Processing Symposium N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. Y1 - 2016 U6 - https://doi.org/10.1109/IPDPS.2016.56 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores N2 - Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 20-16 KW - Mixed Integer Programming, Parallel processing, Node merging, Racing, ParaSCIP, Ubiquity Generator Framework, MIPLIB Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78393 SN - 1438-0064 ER -