TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. T3 - ZIB-Report - 11-21 KW - Large Neighborhood Search KW - Primal Heuristic KW - MIP KW - MIQCP KW - Pseudo-Boolean Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12989 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Schulz, Jens T1 - An approximative Criterion for the Potential of Energetic Reasoning N2 - Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities. We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLIB are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored. T3 - ZIB-Report - 11-12 KW - conflict analysis KW - constraint integer programming KW - cumulative constraint KW - resource-constrained project scheduling KW - energetic reasoning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12655 ER - TY - GEN A1 - Heinz, Stefan A1 - Schulz, Jens T1 - Explanations for the Cumulative Constraint: an Experimental Study N2 - In cumulative scheduling, conflict analysis seems to be one of the key ingredients to solve such problems efficiently. Thereby, the computational complexity of explanation algorithms plays an important role. Even more when we are faced with a backtracking system where explanations need to be constructed on the fly. In this paper we present extensive computational results to analyze the impact of explanation algorithms for the cumulative constraint in a backward checking system. The considered explanation algorithms differ in their quality and computational complexity. We present results for the domain propagation algorithms time-tabling, edge-finding, and energetic reasoning. T3 - ZIB-Report - 11-13 KW - conflict analysis KW - constraint integer programming KW - cumulative constraint KW - resource-constrained project scheduling KW - propagation algorithms Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12668 ER - TY - GEN A1 - Heinz, Stefan A1 - Beck, J. Christopher T1 - Solving Resource Allocation/Scheduling Problems with Constraint Integer Programming N2 - Constraint Integer Programming (CIP) is a generalization of mixed-integer programming (MIP) in the direction of constraint programming (CP) allowing the inference techniques that have traditionally been the core of \P to be integrated with the problem solving techniques that form the core of complete MIP solvers. In this paper, we investigate the application of CIP to scheduling problems that require resource and start-time assignments to satisfy resource capacities. The best current approach to such problems is logic-based Benders decomposition, a manual decomposition method. We present a CIP model and demonstrate that it achieves performance competitive to the decomposition while out-performing the standard MIP and CP formulations. T3 - ZIB-Report - 11-14 KW - constraint integer programming KW - cumulative constraint KW - optional resources KW - mixed integer programming KW - constraint programming Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12691 ER - TY - GEN A1 - Heinz, Stefan A1 - Schlechte, Thomas A1 - Stephan, RĂ¼diger A1 - Winkler, Michael T1 - Solving steel mill slab design problems N2 - The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results. Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality. T3 - ZIB-Report - 11-38 KW - steel mill slab design problem KW - multiple knapsack problem with color constraints KW - integer programming KW - set partitioning KW - binpacking with side constraints Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14089 SN - 1438-0064 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP T2 - Proceedings of the 9th Metaheuristics International Conference (MIC 2011) N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. Y1 - 2011 SN - 978-88-900984-3-7 SP - 51 EP - 60 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Schulz, Jens T1 - An approximative Criterion for the Potential of Energetic Reasoning T2 - Theory and Practice of Algorithms in (Computer) Systems Y1 - 2011 VL - 6595 SP - 229 EP - 239 ER - TY - CHAP A1 - Heinz, Stefan A1 - Schulz, Jens T1 - Explanations for the Cumulative Constraint: An Experimental Study T2 - Experimental Algorithms Y1 - 2011 VL - 6630 SP - 400 EP - 409 ER - TY - JOUR A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 JF - Mathematical Programming Computation Y1 - 2011 UR - http://mpc.zib.de/index.php/MPC/article/view/56 U6 - https://doi.org/10.1007/s12532-011-0025-9 VL - 3 IS - 2 SP - 103 EP - 163 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - On the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 11-01 KW - MIQCP KW - MIP KW - mixed-integer quadratically constrained programming KW - computational KW - nonconvex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11998 ER -