TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - Counting solutions of integer programs using unrestricted subtree detection N2 - In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection. T3 - ZIB-Report - 08-09 KW - Zählen KW - ganzzahlige Programme KW - IP KW - counting KW - integer programming KW - IP Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10632 SN - 1438-0064 ER - TY - CHAP A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten ED - Perron, Laurent ED - Trick, Michael T1 - Counting Solutions of Integer Programs Using Unrestricted Subtree Detection T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008 Y1 - 2008 UR - http://opus.kobv.de/zib/volltexte/2008/1092/ VL - 5015 SP - 278 EP - 282 PB - Springer ER - TY - GEN A1 - Arnold, Thomas A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Henrion, René A1 - Grötschel, Martin A1 - Koch, Thorsten A1 - Tischendorf, Caren A1 - Römisch, Werner ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs T2 - MATHEON - Mathematics for Key Technologies N2 - Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de Y1 - 2014 U6 - https://doi.org/10.4171/137 VL - 1 SP - 135 EP - 146 PB - European Mathematical Society ER - TY - GEN A1 - Arnold, Thomas A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Henrion, René A1 - Grötschel, Martin A1 - Koch, Thorsten A1 - Tischendorf, Caren A1 - Römisch, Werner T1 - A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs N2 - Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de T3 - ZIB-Report - 14-14 KW - gas transport optimization KW - mixed integer nonlinear programming Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49947 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite N2 - This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development. T3 - ZIB-Report - 12-27 KW - LP, MIP, CIP, MINLP, modeling, optimization, SCIP, SoPlex, Zimpl Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15654 SN - 1438-0064 ER - TY - CHAP A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法 T2 - Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming N2 - この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる. N2 - This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development. Y1 - 2012 SP - 165 EP - 192 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法 T1 - Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite N2 - この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる. N2 - This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development. T3 - ZIB-Report - 12-24 KW - SCIP, MIP, MINLP, CIP, LP, modeling, optimization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15598 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 N2 - This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic. T3 - ZIB-Report - 10-31 KW - Mixed Integer Programming KW - Problem Instances KW - IP KW - MIP KW - MIPLIB Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12953 ER - TY - JOUR A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 JF - Mathematical Programming Computation Y1 - 2011 UR - http://mpc.zib.de/index.php/MPC/article/view/56 U6 - https://doi.org/10.1007/s12532-011-0025-9 VL - 3 IS - 2 SP - 103 EP - 163 ER -