TY - GEN A1 - Hege, Hans-Christian A1 - Hutanu, Andrei A1 - Kähler, Ralf A1 - Merzky, André A1 - Radke, Thomas A1 - Seidel, Edward A1 - Ullmer, Brygg T1 - Progressive Retrieval and Hierarchical Visualization of Large Remote Data N2 - \noindent The size of data sets produced on remote supercomputer facilities frequently exceeds the processing capabilities of local visualization workstations. This phenomenon increasingly limits scientists when analyzing results of large-scale scientific simulations. That problem gets even more prominent in scientific collaborations, spanning large virtual organizations, working on common shared sets of data distributed in Grid environments. In the visualization community, this problem is addressed by distributing the visualization pipeline. In particular, early stages of the pipeline are executed on resources closer to the initial (remote) locations of the data sets. \noindent This paper presents an efficient technique for placing the first two stages of the visualization pipeline (data access and data filter) onto remote resources. This is realized by exploiting the ``extended retrieve'' feature of GridFTP for flexible, high performance access to very large HDF5 files. We reduce the number of network transactions for filtering operations by utilizing a server side data processing plugin, and hence reduce latency overhead compared to GridFTP partial file access. The paper further describes the application of hierarchical rendering techniques on remote uniform data sets, which make use of the remote data filtering stage. T3 - ZIB-Report - 03-40 KW - remote data access KW - large files KW - visualization pipeline KW - hdf5 KW - grid Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7623 ER - TY - GEN A1 - Kähler, Ralf A1 - Hege, Hans-Christian T1 - Visualization of Time-Dependent Adaptive Mesh Refinement Data N2 - Analysis of phenomena that simultaneously occur on quite different spatial and temporal scales require adaptive, hierarchical schemes to reduce computational and storage demands. For data represented as grid functions, the key are adaptive, hierarchical, time-dependent grids that resolve spatio-temporal details without too much redundancy. Here, so-called AMR grids gain increasing popularity. For visualization and feature identification/tracking, the underlying continuous function has to be faithfully reconstructed by spatial and temporal interpolation. Well designed interpolation methods yield better results and help to reduce the amount of data to be stored. We address the problem of temporal interpolation of AMR grid data, e.g.\ for creation of smooth animations or feature tracking. Intermediate grid hierarchies are generated by merging the cells on all refinement levels that are present in the key frames considered. Utilizing a clustering algorithm a structure of nested grids is induced on the resulting collection of cells. The grid functions are mapped to the intermediate hierarchy, thus allowing application of appropriate interpolation techniques. T3 - ZIB-Report - 03-16 KW - AMR KW - non-conforming hexahedral grids KW - multi-resolution techniques Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7384 ER - TY - GEN A1 - Kähler, Ralf A1 - Simon, Mark A1 - Hege, Hans-Christian T1 - Fast Volume Rendering of Sparse High-Resolution Datasets Using Adaptive Mesh Refinement Hierarchies N2 - In this paper we present an algorithm that accelerates 3D texture-based volume rendering of large and sparse data sets. A hierarchical data structure (known as AMR tree) consisting of nested uniform grids is employed in order to efficiently encode regions of interest. The hierarchies resulting from this kind of space partitioning yield a good balance between the amount of volume to render and the number of texture bricks -- a prerequisite for fast rendering. Comparing our approach to an octree based algorithm we show that our algorithm increases rendering performance significantly for sparse data. A further advantage is that less parameter tuning is necessary. T3 - ZIB-Report - 01-25 KW - scalar field visualization KW - volume visualization KW - volume rendering KW - 3D texture mapping KW - hierarchical space partitioning KW - AMR tree KW - octree KW - spar Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6516 ER - TY - GEN A1 - Kähler, Ralf A1 - Hege, Hans-Christian T1 - Interactive Volume Rendering of Adaptive Mesh Refinement Data N2 - Many phenomena in nature and engineering happen simultaneously on rather diverse spatial and temporal scales, i.e.\ exhibit a multi-scale character. Therefore various hierarchical data structures and numerical schemes have been devised to represent quantitatively such phenomena. A special numerical multilevel technique, associated with a particular hierarchical data structure, is so-called Adaptive Mesh Refinement (AMR). This scheme achieves locally very high spatial and temporal resolutions. Due to its popularity, many scientists are in need of interactive visualization tools for AMR data. In this article we present a 3D texture-based volume rendering algorithm for AMR data, that directly utilizes the hierarchical structure. Thereby interactive rendering even for large data sets is achieved. In particular the problems of interpolation artifacts, opacity corrections, and texture memory limitations are addressed. The algorithm's value in practice is demonstrated with simulation and image data. T3 - ZIB-Report - 01-30 KW - Scalar field visualization KW - multiresolution volume rendering KW - AMR hierarchies KW - 3D texture mapping Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6561 ER -