TY - GEN A1 - Grötschel, Martin T1 - My Favorite Theorem: Characterizations of Perfect Graphs N2 - This paper summarizes and discusses various characterizations of perfect graphs and mentions some open problems in this area. T3 - ZIB-Report - SC-99-17 KW - graph theory KW - perfect graphs KW - integer programming Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-4053 ER - TY - GEN A1 - Grötschel, Martin T1 - Frequency Assignment in Mobile Phone Systems N2 - Wireless communication networks employ radio frequencies to establish communication links. The available radio spectrum is very limited. To meet today's radio communication demand, this resource has to be administered and reused carefully in order to control mutual interference. The reuse can be organized via separation in space, time, or frequency, for example. The problem, therefore, arises to distribute frequencies to links in a ``reasonable manner''. This is the basic form of the frequency assignment problem. What ``reasonable'' means, how to quantify this measure of quality, which technical side constraints to consider cannot be answered in general. The exact specification of this task and its mathematical model depend heavily on the particular application considered. In this paper we discuss this issue with respect to the GSM standard for mobile communication. T3 - ZIB-Report - 00-58 KW - frequency assignment KW - telecommunication KW - mobile phone KW - integer programming KW - coloring Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6265 ER - TY - GEN A1 - Grötschel, Martin A1 - Nemhauser, George T1 - George Dantzig's contributions to integer programming N2 - This paper reviews George Dantzig's contribution to integer programming, especially his seminal work with Fulkerson and Johnson on the traveling salesman problem T3 - ZIB-Report - 07-39 KW - George Dantzig KW - integer programming KW - traveling salesman problem KW - TSP KW - mixed-integer programs Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10393 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Jaeger, Ulrich T1 - Planning Problems in Public Transit N2 - Every day, millions of people are transported by buses, trains, and airplanes in Germany. Public transit (PT) is of major importance for the quality of life of individuals as well as the productivity of entire regions. Quality and efficiency of PT systems depend on the political framework (state-run, market oriented) and the suitability of the infrastructure (railway tracks, airport locations), the existing level of service (timetable, flight schedule), the use of adequate technologies (information, control, and booking systems), and the best possible deployment of equipment and resources (energy, vehicles, crews). The decision, planning, and optimization problems arising in this context are often gigantic and “scream” for mathematical support because of their complexity. This article sketches the state and the relevance of mathematics in planning and operating public transit, describes today’s challenges, and suggests a number of innovative actions. The current contribution of mathematics to public transit is — depending on the transportation mode — of varying depth. Air traffic is already well supported by mathematics. Bus traffic made significant advances in recent years, while rail traffic still bears significant opportunities for improvements. In all areas of public transit, the existing potentials are far from being exhausted. For some PT problems, such as vehicle and crew scheduling in bus and air traffic, excellent mathematical tools are not only available, but used in many places. In other areas, such as rolling stock rostering in rail traffic, the performance of the existing mathematical algorithms is not yet sufficient. Some topics are essentially untouched from a mathematical point of view; e.g., there are (except for air traffic) no network design or fare planning models of practical relevance. PT infrastructure construction is essentially devoid of mathematics, even though enormous capital investments are made in this area. These problems lead to questions that can only be tackled by engineers, economists, politicians, and mathematicians in a joint effort. Among other things, the authors propose to investigate two specific topics, which can be addressed at short notice, are of fundamental importance not only for the area of traffic planning, should lead to a significant improvement in the collaboration of all involved parties, and, if successful, will be of real value for companies and customers: • discrete optimal control: real-time re-planning of traffic systems in case of disruptions, • model integration: service design in bus and rail traffic. Work on these topics in interdisciplinary research projects could be funded by the German ministry of research and education (BMBF), the German ministry of economics (BMWi), or the German science foundation (DFG). T3 - ZIB-Report - 09-13 KW - öffentlicher Verkehr KW - diskrete Optimierung KW - ganzzahlige Programmierung KW - public transit KW - discrete optimization KW - integer programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11252 SN - 1438-0064 ER -