TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack - A solver for STP and variants with parallelization extensions N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. T3 - ZIB-Report - 15-27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54648 SN - 1438-0064 N1 - A revised version is provided here: http://nbn-resolving.de/urn:nbn:de:0297-zib-60170. ER - TY - GEN A1 - Gamrath, Gerald A1 - Schubert, Christoph T1 - Measuring the impact of branching rules for mixed-integer programming N2 - Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching. T3 - ZIB-Report - 17-34 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - strong branching Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64722 SN - 1438-0064 ER - TY - THES A1 - Gamrath, Gerald T1 - Generic Branch-Cut-and-Price N2 - In this thesis, we present the theoretical background, implementational details and computational results concerning the generic branch-cut-and-price solver GCG. KW - mixed-integer programming KW - column generation KW - branch-and-price Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57543 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack – A solver for STP and variants with parallelization extensions N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. T3 - ZIB-Report - 16-41 KW - Steiner tree problem KW - SCIP-Jack KW - Steiner tree variants KW - maximum-weight connected subgraph KW - prize-collecting Steiner tree Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60170 SN - 1438-0064 ER - TY - CHAP A1 - Gamrath, Gerald A1 - Melchiori, Anna A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Salvagnin, Domenico T1 - Branching on Multi-aggregated Variables T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015 N2 - In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly. Y1 - 2015 U6 - https://doi.org/10.1007/978-3-319-18008-3_10 VL - 9075 SP - 141 EP - 156 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack - A massively parallel STP solver N2 - In this article we describe the impact from embedding a 15 year old model for solving the Steiner tree problem in graphs in a state-of-the-art MIP-Framework, making the result run in a massively parallel environment and extending the model to solve as many variants as possible. We end up with a high-perfomance solver that is capable of solving previously unsolved instances and, in contrast to its predecessor, is freely available for academic research. T3 - ZIB-Report - 14-35 KW - Steiner Tree Problem KW - Mixed-Integer Programming KW - Branch-and-Cut KW - DIMACS Challenge Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52293 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-based primal heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time. T3 - ZIB-Report - 15-26 KW - mixed-integer programming, large neighborhood search, primal heuristics, domain propagation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55518 SN - 1438-0064 ER - TY - CHAP A1 - Gamrath, Gerald A1 - Hiller, Benjamin A1 - Witzig, Jakob T1 - Reoptimization Techniques in MIP Solvers N2 - Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to ``warmstart'' using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach. Y1 - 2015 SN - 978-3-319-20086-6 U6 - https://doi.org/10.1007/978-3-319-20086-6_14 VL - 9125 SP - 181 EP - 192 PB - Springer ET - Experimental Algorithms, Lecture Notes in Computer Science ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. T3 - ZIB-Report - 17-56 KW - mixed-integer programming KW - primal heuristics KW - fix-and-propagate KW - large neighborhood search KW - domain propagation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65387 SN - 1438-0064 ER - TY - JOUR A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Miltenberger, Matthias A1 - Weninger, Dieter T1 - Progress in presolving for mixed integer programming JF - Mathematical Programming Computation N2 - This paper describes three presolving techniques for solving mixed integer programming problems (MIPs) that were implemented in the academic MIP solver SCIP. The task of presolving is to reduce the problem size and strengthen the formulation, mainly by eliminating redundant information and exploiting problem structures. The first method fixes continuous singleton columns and extends results known from duality fixing. The second analyzes and exploits pairwise dominance relations between variables, whereas the third detects isolated subproblems and solves them independently. The performance of the presented techniques is demonstrated on two MIP test sets. One contains all benchmark instances from the last three MIPLIB versions, while the other consists of real-world supply chain management problems. The computational results show that the combination of all three presolving techniques almost halves the solving time for the considered supply chain management problems. For the MIPLIB instances we obtain a speedup of 20 % on affected instances while not degrading the performance on the remaining problems. Y1 - 2015 U6 - https://doi.org/10.1007/s12532-015-0083-5 VL - 7 IS - 4 SP - 367 EP - 398 ER -