TY - JOUR A1 - Seidel, Ronald A1 - Blumer, Michael A1 - Zaslansky, Paul A1 - Knötel, David A1 - Huber, Daniel R. A1 - Weaver, James C. A1 - Fratzl, Peter A1 - Omelon, Sidney A1 - Bertinetti, Luca A1 - Dean, Mason N. T1 - Ultrastructural, material and crystallographic description of endophytic masses – a possible damage response in shark and ray tessellated calcified cartilage JF - Journal of Structural Biology N2 - The cartilaginous endoskeletons of Elasmobranchs (sharks and rays) are reinforced superficially by minute, mineralized tiles, called tesserae. Unlike the bony skeletons of other vertebrates, elasmobranch skeletons have limited healing capability and their tissues’ mechanisms for avoiding damage or managing it when it does occur are largely unknown. Here we describe an aberrant type of mineralized elasmobranch skeletal tissue called endophytic masses (EPMs), which grow into the uncalcified cartilage of the skeleton, but exhibit a strikingly different morphology compared to tesserae and other elasmobranch calcified tissues. We use biological and materials characterization techniques, including computed tomography, electron and light microscopy, x-ray and Raman spectroscopy and histology to characterize the morphology, ultrastructure and chemical composition of tesserae-associated EPMs in different elasmobranch species. EPMs appear to develop between and in intimate association with tesserae, but lack the lines of periodic growth and varying mineral density characteristic of tesserae. EPMs are mineral-dominated (high mineral and low organic content), comprised of birefringent bundles of large monetite or brushite crystals aligned end to end in long strings. Both Unusual skeletal mineralization in elasmobranchs tesserae and EPMs appear to develop in a type-2 collagen-based matrix, but in contrast to tesserae, all chondrocytes embedded or in contact with EPMs are dead and mineralized. The differences outlined between EPMs and tesserae demonstrate them to be distinct tissues. We discuss several possible reasons for EPM development, including tissue reinforcement, repair, and disruptions of mineralization processes, within the context of elasmobranch skeletal biology as well as descriptions of damage responses of other vertebrate mineralized tissues. Y1 - 2017 U6 - https://doi.org/10.1016/j.jsb.2017.03.004 ER - TY - JOUR A1 - Chaumel, Júlia A1 - Schotte, Merlind A1 - Bizzarro, Joseph J. A1 - Zaslansky, Paul A1 - Fratzl, Peter A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage JF - Bone N2 - In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone. Y1 - 2020 U6 - https://doi.org/10.1016/j.bone.2020.115264 VL - 134 SP - 115264 ER - TY - GEN A1 - Chaumel, Júlia A1 - Schotte, Merlind A1 - Bizzarro, Joseph J. A1 - Zaslansky, Paul A1 - Fratzl, Peter A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage N2 - In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone. T3 - ZIB-Report - 20-04 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77087 SN - 1438-0064 ER -