TY - JOUR A1 - Reuter, Bernhard A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - Generalized Markov modeling of nonreversible molecular kinetics JF - The Journal of Chemical Physics N2 - Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems. Thus, we generalized the common Robust Perron Cluster Cluster Analysis (PCCA+) method to enable straightforward modeling of nonequilibrium systems as well. The resulting Generalized PCCA (G-PCCA) method readily handles equilibrium as well as nonequilibrium data by utilizing real Schur vectors instead of eigenvectors. This is implemented in the G-PCCA algorithm that enables the semiautomatic coarse graining of molecular kinetics. G-PCCA is not limited to the detection of metastable states but also enables the identification and modeling of cyclic processes. This is demonstrated by three typical examples of nonreversible systems. Y1 - 2019 U6 - https://doi.org/10.1063/1.5064530 VL - 17 IS - 150 SP - 174103 ER - TY - JOUR A1 - Ernst, Natalia A1 - Fackeldey, Konstantin A1 - Volkamer, Andrea A1 - Opatz, Oliver A1 - Weber, Marcus T1 - Computation of temperature-dependent dissociation rates of metastable protein–ligand complexes JF - Molecular Simulation N2 - Molecular simulations are often used to analyse the stability of protein–ligand complexes. The stability can be characterised by exit rates or using the exit time approach, i.e. by computing the expected holding time of the complex before its dissociation. However determining exit rates by straightforward molecular dynamics methods can be challenging for stochastic processes in which the exit event occurs very rarely. Finding a low variance procedure for collecting rare event statistics is still an open problem. In this work we discuss a novel method for computing exit rates which uses results of Robust Perron Cluster Analysis (PCCA+). This clustering method gives the possibility to define a fuzzy set by a membership function, which provides additional information of the kind ‘the process is being about to leave the set’. Thus, the derived approach is not based on the exit event occurrence and, therefore, is also applicable in case of rare events. The novel method can be used to analyse the temperature effect of protein–ligand systems through the differences in exit rates, and, thus, open up new drug design strategies and therapeutic applications. Y1 - 2019 U6 - https://doi.org/10.1080/08927022.2019.1610949 VL - 45 IS - 11 SP - 904 EP - 911 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Koltai, Peter A1 - Nevir, Peter A1 - Rust, Henning A1 - Schild, Axel A1 - Weber, Marcus T1 - From metastable to coherent sets - Time-discretization schemes JF - Chaos: An Interdisciplinary Journal of Nonlinear Science N2 - In this article, we show that these well-established spectral algorithms (like PCCA+, Perron Cluster Cluster Analysis) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application. Y1 - 2019 U6 - https://doi.org/10.1063/1.5058128 VL - 29 SP - 012101 EP - 012101 ER -