TY - GEN A1 - Fackeldey, Konstantin A1 - Koltai, Péter A1 - Névir, Peter A1 - Rust, Henning A1 - Schild, Axel A1 - Weber, Marcus T1 - From Metastable to Coherent Sets - time-discretization schemes N2 - Given a time-dependent stochastic process with trajectories x(t) in a space $\Omega$, there may be sets such that the corresponding trajectories only very rarely cross the boundaries of these sets. We can analyze such a process in terms of metastability or coherence. Metastable sets M are defined in space $M\subset\Omega$, coherent sets $M(t)\subset\Omega$ are defined in space and time. Hence, if we extend the space by the time-variable t, coherent sets are metastable sets in $\Omega\times[0,\infty]$. This relation can be exploited, because there already exist spectral algorithms for the identification of metastable sets. In this article we show that these well-established spectral algorithms (like PCCA+) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-timediscretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application. T3 - ZIB-Report - 17-74 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66074 SN - 1438-0064 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Niknejad, Amir A1 - Weber, Marcus T1 - Finding Metastabilities in Reversible Markov Chains based on Incomplete Sampling: Case of Molecular Simulation JF - Special Matrices Y1 - 2017 U6 - https://doi.org/10.1515/spma-2017-0006 IS - 5/1 SP - 73 EP - 81 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - GenPCCA -- Markov State Models for Non-Equilibrium Steady States JF - Big data clustering: Data preprocessing, variable selection, and dimension reduction. WIAS Report No. 29 Y1 - 2017 U6 - https://doi.org/10.20347/WIAS.REPORT.29 SP - 70 EP - 80 ER - TY - JOUR A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-Free Markov State Model Building JF - Journal of Chemical Physics Y1 - 2017 U6 - https://doi.org/10.1063/1.4978501 VL - 146 IS - 12 ER - TY - GEN A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-free Markov State Building N2 - Molecular dynamics (MD) simulations face challenging problems since the timescales of interest often are much longer than what is possible to simulate and even if sufficiently long simulation are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant timescales accessible via coarse grained representations that also allows for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM. T3 - ZIB-Report - 17-10 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62167 SN - 1438-0064 ER -