TY - JOUR A1 - Gorgulla, Christoph A1 - Das, Krishna M. Padmanabha A1 - Leigh, Kendra E A1 - Cespugli, Marco A1 - Fischer, Patrick D. A1 - Wang, Zi-Fu A1 - Tesseyre, Guilhem A1 - Pandita, Shreya A1 - Shnapir, Alex A1 - Calderaio, Anthony A1 - Hutcheson, Colin A1 - Gechev, Minko A1 - Rose, Alexander A1 - Lewis, Noam A1 - Yaffe, Erez A1 - Luxenburg, Roni A1 - Herce, Henry D. A1 - Durmaz, Vedat A1 - Halazonetis, Thanos D. A1 - Fackeldey, Konstantin A1 - Patten, Justin J. A1 - Chuprina, Alexander A1 - Dziuba, Igor A1 - Plekhova, Alla A1 - Moroz, Yurii A1 - Radchenko, Dmytro A1 - Tarkhanova, Olga A1 - Yavnyuk, Irina A1 - Gruber, Christian C. A1 - Yust, Ryan A1 - Payne, Dave A1 - Näär, Anders M. A1 - Namchuk, Mark N. A1 - Davey, Robert A. A1 - Wagner, Gerhard A1 - Kinney, Jamie A1 - Arthanari, Haribabu T1 - A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening JF - iScience N2 - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development. Y1 - 2021 U6 - https://doi.org/10.26434/chemrxiv.12682316 VL - 24 IS - 2 SP - 102021 PB - CellPress ER - TY - JOUR A1 - Gorgulla, Christoph A1 - Boeszoermnyi, Andras A1 - Wang, Zi-Fu A1 - Fischer, Patrick D. A1 - Coote, Paul A1 - Das, Krishna M. Padmanabha A1 - Malets, Yehor S. A1 - Radchenko, Dmytro S. A1 - Moroz, Yurii A1 - Scott, David A. A1 - Fackeldey, Konstantin A1 - Hoffmann, Moritz A1 - Iavniuk, Iryna A1 - Wagner, Gerhard A1 - Arthanari, Haribabu T1 - An open-source drug discovery platform enables ultra-large virtual screens JF - Nature N2 - On average, an approved drug today costs $2-3 billion and takes over ten years to develop1. In part, this is due to expensive and time-consuming wet-lab experiments, poor initial hit compounds, and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening (SBVS) has the potential to mitigate these problems. With SBVS, the quality of the hits improves with the number of compounds screened2. However, despite the fact that large compound databases exist, the ability to carry out large-scale SBVSs on computer clusters in an accessible, efficient, and flexible manner has remained elusive. Here we designed VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large ligand libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we have prepared the largest and freely available ready-to-dock ligand library available, with over 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened over 1 billion compounds and discovered a small molecule inhibitor (iKeap1) that engages KEAP1 with nanomolar affinity (Kd = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. We also identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify binders with high affinity for target proteins. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1038/s41586-020-2117-z VL - 580 SP - 663 EP - 668 PB - Springer Nature ER - TY - JOUR A1 - Gorgulla, Christoph A1 - Çınaroğlu, Süleyman A1 - Fischer, Patrick D. A1 - Fackeldey, Konstantin A1 - Wagner, Gerhard A1 - Arthanari, Haribabu T1 - VirtualFlow Ants—Ultra-Large Virtual Screenings with Artificial Intelligence Driven Docking Algorithm Based on Ant Colony Optimization JF - Special Issue Artificial Intelligence & Deep Learning Approaches for Structural Bioinformatics N2 - The docking program PLANTS, which is based on ant colony optimization (ACO) algorithm, has many advanced features for molecular docking. Among them are multiple scoring functions, the possibility to model explicit displaceable water molecules, and the inclusion of experimental constraints. Here, we add support of PLANTS to VirtualFlow (VirtualFlow Ants), which adds a valuable method for primary virtual screenings and rescoring procedures. Furthermore, we have added support of ligand libraries in the MOL2 format, as well as on the fly conversion of ligand libraries which are in the PDBQT format to the MOL2 format to endow VirtualFlow Ants with an increased flexibility regarding the ligand libraries. The on the fly conversion is carried out with Open Babel and the program SPORES. We applied VirtualFlow Ants to a test system involving KEAP1 on the Google Cloud up to 128,000 CPUs, and the observed scaling behavior is approximately linear. Furthermore, we have adjusted several central docking parameters of PLANTS (such as the speed parameter or the number of ants) and screened 10 million compounds for each of the 10 resulting docking scenarios. We analyzed their docking scores and average docking times, which are key factors in virtual screenings. The possibility of carrying out ultra-large virtual screening with PLANTS via VirtualFlow Ants opens new avenues in computational drug discovery. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.3390/ijms22115807 VL - 22 IS - 11 SP - 5807 ER - TY - JOUR A1 - Gorgulla, Christoph A1 - Fackeldey, Konstantin A1 - Wagner, Gerhard A1 - Arthanari, Haribabu T1 - Accounting of Receptor Flexibility in Ultra-Large Virtual Screens with VirtualFlow Using a Grey Wolf Optimization Method JF - Supercomputing Frontiers and Innovations N2 - Structure-based virtual screening approaches have the ability to dramatically reduce the time and costs associated to the discovery of new drug candidates. Studies have shown that the true hit rate of virtual screenings improves with the scale of the screened ligand libraries. Therefore, we have recently developed an open source drug discovery platform (VirtualFlow), which is able to routinely carry out ultra-large virtual screenings. One of the primary challenges of molecular docking is the circumstance when the protein is highly dynamic or when the structure of the protein cannot be captured by a static pose. To accommodate protein dynamics, we report the extension of VirtualFlow to allow the docking of ligands using a grey wolf optimization algorithm using the docking program GWOVina, which substantially improves the quality and efficiency of flexible receptor docking compared to AutoDock Vina. We demonstrate the linear scaling behavior of VirtualFlow utilizing GWOVina up to 128 000 CPUs. The newly supported docking method will be valuable for drug discovery projects in which protein dynamics and flexibility play a significant role. Y1 - 2020 U6 - https://doi.org/10.14529/jsfi200301 VL - 7 IS - 3 SP - 4 EP - 12 ER - TY - JOUR A1 - Gorgulla, Christoph A1 - Jayaraj, Abhilash A1 - Fackeldey, Konstantin A1 - Arthanari, Haribabu T1 - Emerging frontiers in virtual drug discovery: From quantum mechanical methods to deep learning approaches JF - Current Opinion in Chemical Biology N2 - Virtual screening-based approaches to discover initial hit and lead compounds have the potential to reduce both the cost and time of early drug discovery stages, as well as to find inhibitors for even challenging target sites such as protein–protein interfaces. Here in this review, we provide an overview of the progress that has been made in virtual screening methodology and technology on multiple fronts in recent years. The advent of ultra-large virtual screens, in which hundreds of millions to billions of compounds are screened, has proven to be a powerful approach to discover highly potent hit compounds. However, these developments are just the tip of the iceberg, with new technologies and methods emerging to propel the field forward. Examples include novel machine-learning approaches, which can reduce the computational costs of virtual screening dramatically, while progress in quantum-mechanical approaches can increase the accuracy of predictions of various small molecule properties. Y1 - 2022 U6 - https://doi.org/10.1016/j.cbpa.2022.102156 VL - 69 SP - 102156 EP - 102156-12 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Gorgulla, Christoph A1 - Weber, Marcus T1 - Neue Medikamente dank Supercomputern JF - Spektrum der Wissenschaft N2 - Die aktuelle Pandemie verdeutlicht, wie wichtig es ist, rasch geeignete Arzneimittel zu finden. In Computer­simulationen gelingt das erheblich schneller als im Labor. Gegen das Coronavirus ließen sich auf diese Weise bereits Wirkstoffkandidaten identifizieren. Y1 - 2021 IS - 11 SP - 40 EP - 46 ER - TY - JOUR A1 - Gorgulla, Christoph A1 - Nigam, AkshatKumar A1 - Koop, Matt A1 - Selim Çınaroğlu, Süleyman A1 - Secker, Christopher A1 - Haddadnia, Mohammad A1 - Kumar, Abhishek A1 - Malets, Yehor A1 - Hasson, Alexander A1 - Li, Minkai A1 - Tang, Ming A1 - Levin-Konigsberg, Roni A1 - Radchenko, Dmitry A1 - Kumar, Aditya A1 - Gehev, Minko A1 - Aquilanti, Pierre-Yves A1 - Gabb, Henry A1 - Alhossary, Amr A1 - Wagner, Gerhard A1 - Aspuru-Guzik, Alán A1 - Moroz, Yurii S. A1 - Fackeldey, Konstantin A1 - Arthanari, Haribabu T1 - VirtualFlow 2.0 - The Next Generation Drug Discovery Platform Enabling Adaptive Screens of 69 Billion Molecules JF - bioRxiv KW - preprint Y1 - 2023 U6 - https://doi.org/10.1101/2023.04.25.537981 ER - TY - JOUR A1 - Secker, Christopher A1 - Fackeldey, Konstantin A1 - Weber, Marcus A1 - Ray, Sourav A1 - Gorgulla, Christoph A1 - Schütte, Christof T1 - Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists JF - Journal of Cheminformatics N2 - Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the μ-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported β-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale. Y1 - 2023 U6 - https://doi.org/10.1186/s13321-023-00746-4 VL - 15 ER - TY - JOUR A1 - Schimunek, Johannes A1 - Seidl, Philipp A1 - Elez, Katarina A1 - Hempel, Tim A1 - Le, Tuan A1 - Noé, Frank A1 - Olsson, Simon A1 - Raich, Lluís A1 - Winter, Robin A1 - Gokcan, Hatice A1 - Gusev, Filipp A1 - Gutkin, Evgeny M. A1 - Isayev, Olexandr A1 - Kurnikova, Maria G. A1 - Narangoda, Chamali H. A1 - Zubatyuk, Roman A1 - Bosko, Ivan P. A1 - Furs, Konstantin V. A1 - Karpenko, Anna D. A1 - Kornoushenko, Yury V. A1 - Shuldau, Mikita A1 - Yushkevich, Artsemi A1 - Benabderrahmane, Mohammed B. A1 - Bousquet-Melou, Patrick A1 - Bureau, Ronan A1 - Charton, Beatrice A1 - Cirou, Bertrand C. A1 - Gil, Gérard A1 - Allen, William J. A1 - Sirimulla, Suman A1 - Watowich, Stanley A1 - Antonopoulos, Nick A1 - Epitropakis, Nikolaos A1 - Krasoulis, Agamemnon A1 - Itsikalis, Vassilis A1 - Theodorakis, Stavros A1 - Kozlovskii, Igor A1 - Maliutin, Anton A1 - Medvedev, Alexander A1 - Popov, Petr A1 - Zaretckii, Mark A1 - Eghbal-Zadeh, Hamid A1 - Halmich, Christina A1 - Hochreiter, Sepp A1 - Mayr, Andreas A1 - Ruch, Peter A1 - Widrich, Michael A1 - Berenger, Francois A1 - Kumar, Ashutosh A1 - Yamanishi, Yoshihiro A1 - Zhang, Kam Y. J. A1 - Bengio, Emmanuel A1 - Bengio, Yoshua A1 - Jain, Moksh J. A1 - Korablyov, Maksym A1 - Liu, Cheng-Hao A1 - Marcou, Gilles A1 - Glaab, Enrico A1 - Barnsley, Kelly A1 - Iyengar, Suhasini M. A1 - Ondrechen, Mary Jo A1 - Haupt, V. Joachim A1 - Kaiser, Florian A1 - Schroeder, Michael A1 - Pugliese, Luisa A1 - Albani, Simone A1 - Athanasiou, Christina A1 - Beccari, Andrea A1 - Carloni, Paolo A1 - D’Arrigo, Giulia A1 - Gianquinto, Eleonora A1 - Goßen, Jonas A1 - Hanke, Anton A1 - Joseph, Benjamin P. A1 - Kokh, Daria B. A1 - Kovachka, Sandra A1 - Manelfi, Candida A1 - Mukherjee, Goutam A1 - Muñiz-Chicharro, Abraham A1 - Musiani, Francesco A1 - Nunes-Alves, Ariane A1 - Paiardi, Giulia A1 - Rossetti, Giulia A1 - Sadiq, S. Kashif A1 - Spyrakis, Francesca A1 - Talarico, Carmine A1 - Tsengenes, Alexandros A1 - Wade, Rebecca C. A1 - Copeland, Conner A1 - Gaiser, Jeremiah A1 - Olson, Daniel R. A1 - Roy, Amitava A1 - Venkatraman, Vishwesh A1 - Wheeler, Travis J. A1 - Arthanari, Haribabu A1 - Blaschitz, Klara A1 - Cespugli, Marco A1 - Durmaz, Vedat A1 - Fackeldey, Konstantin A1 - Fischer, Patrick D. A1 - Gorgulla, Christoph A1 - Gruber, Christian A1 - Gruber, Karl A1 - Hetmann, Michael A1 - Kinney, Jamie E. A1 - Padmanabha Das, Krishna M. A1 - Pandita, Shreya A1 - Singh, Amit A1 - Steinkellner, Georg A1 - Tesseyre, Guilhem A1 - Wagner, Gerhard A1 - Wang, Zi-Fu A1 - Yust, Ryan J. A1 - Druzhilovskiy, Dmitry S. A1 - Filimonov, Dmitry A. A1 - Pogodin, Pavel V. A1 - Poroikov, Vladimir A1 - Rudik, Anastassia V. A1 - Stolbov, Leonid A. A1 - Veselovsky, Alexander V. A1 - De Rosa, Maria A1 - De Simone, Giada A1 - Gulotta, Maria R. A1 - Lombino, Jessica A1 - Mekni, Nedra A1 - Perricone, Ugo A1 - Casini, Arturo A1 - Embree, Amanda A1 - Gordon, D. Benjamin A1 - Lei, David A1 - Pratt, Katelin A1 - Voigt, Christopher A. A1 - Chen, Kuang-Yu A1 - Jacob, Yves A1 - Krischuns, Tim A1 - Lafaye, Pierre A1 - Zettor, Agnès A1 - Rodríguez, M. Luis A1 - White, Kris M. A1 - Fearon, Daren A1 - Von Delft, Frank A1 - Walsh, Martin A. A1 - Horvath, Dragos A1 - Brooks III, Charles L. A1 - Falsafi, Babak A1 - Ford, Bryan A1 - García-Sastre, Adolfo A1 - Yup Lee, Sang A1 - Naffakh, Nadia A1 - Varnek, Alexandre A1 - Klambauer, Günter A1 - Hermans, Thomas M. T1 - A community effort in SARS-CoV-2 drug discovery JF - Molecular Informatics KW - COVID-19 KW - drug discovery KW - machine learning KW - SARS-CoV-2 Y1 - 2023 U6 - https://doi.org/https://doi.org/10.1002/minf.202300262 VL - 43 IS - 1 SP - e202300262 ER -