TY - GEN A1 - Lang, Jens A1 - Erdmann, Bodo T1 - Adaptive Linearly Implicit Methods for Heat and Mass Transfer Problems N2 - Dynamical process simulation of complex real-life problems often requires the use of modern algorithms, which automatically adapt both the time and space discretization in order to get error-controlled approximations of the solution. In this paper, a combination of linearly implicit time integrators of Rosenbrock type and adaptive multilevel finite elements based on a posteriori error estimates is presented. This approach has proven to work quite satisfactorily for a wide range of challenging practical problems. We show the performance of our adaptive method for two applications that arise in the study of flame balls and brine transport in porous media. T3 - ZIB-Report - 00-21 KW - Nonlinear time-dependent PDEs KW - Rosenbrock methods KW - multilevel finite elements KW - local refinement KW - a posteriori error estimates Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5892 ER - TY - GEN A1 - Deuflhard, Peter A1 - Erdmann, Bodo A1 - Roitzsch, Rainer A1 - Lines, Glenn Terje T1 - Adaptive Finite Element Simulation of Ventricular Fibrillation Dynamics N2 - The dynamics of ventricular fibrillation caused by irregular excitation is simulated in the frame of the monodomain model with an action potential model due to Aliev-Panfilov for a human 3D geometry. The numerical solution of this multiscale reaction-diffusion problem is attacked by algorithms which are fully adaptive in both space and time (code library {\sc Kardos}). The obtained results clearly demonstrate an accurate resolution of the cardiac potential during the excitation and the plateau phases (in the regular cycle) as well as after a reentrant excitation (in the irregular cycle). T3 - ZIB-Report - 06-49 KW - reaction-diffusion equations KW - Aliev-Panfilov model KW - electrocardiology KW - adaptive finite elements KW - adaptive time integration KW - adaptive Rothe method Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9431 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Erdmann, Bodo A1 - Roitzsch, Rainer A1 - Lines, Glenn Terje T1 - Adaptive Finite Element Simulation of Ventricular Dynamics JF - J. Computing and Visualization in Science Y1 - 2009 VL - 12 SP - 201 EP - 205 ER - TY - GEN A1 - Kober, Cornelia A1 - Erdmann, Bodo A1 - Lang, Jens A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - Adaptive Finite Element Simulation of the Human Mandible Using a New Physiological Model of the Masticatory Muscles N2 - Structural mechanics simulation of bony organs is of general medical and biomechanical interest, because of the interdependence of the inner architecture of bone and its functional loading already stated by Wolff in 1892. This work is part of a detailed research project concerning the human mandible. By adaptive finite element techniques, stress/strain profiles occurring in the bony structure under biting were simulated. Estimates of the discretization errors, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method. In general, our simulation requires a representation of the organ's geometry, an appropriate material description, and the load case due to teeth, muscle, or joint forces. In this paper, we want to focus on the influence of the masticatory system. Our goal is to capture the physiological situation as far as possible. By means of visualization techniques developed by the group, we are able to extract individual muscle fibres from computed tomography data. By a special algorithm, the fibres are expanded to fanlike (esp. for the musc. temporalis) coherent vector fields similar to the anatomical reality. The activity of the fibres can be adapted according to compartmentalisation of the muscles as measured by electromyological experiments. A refined sensitivity analysis proved remarkable impact of the presented approach on the simulation results. T3 - ZIB-Report - 04-16 KW - adaptive finite elements KW - error estimation KW - local grid refinement KW - isotropic linear elasticity KW - human mandible KW - masticatory muscles Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7917 ER - TY - CHAP A1 - Kober, C. A1 - Erdmann, Bodo A1 - Lang, Jens A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - Adaptive Finite Element Simulation of the Human Mandible Using a New Physiological Model of the Masticatory Muscles T2 - Proc. of 75th Annual Meeting of the GAMM Y1 - 2004 VL - 4 IS - 1 SP - 332 EP - 333 ER - TY - GEN A1 - Ackermann, Jörg A1 - Erdmann, Bodo A1 - Roitzsch, Rainer T1 - A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions. N2 - An error controlled finite elemente method (FEM) for solving stationary Schrödinger equations in three space dimensions is proposed. The method is based on an adaptive space discretization into tetrahedra and local polynomial basis functions of order $p=1$--$5$ defined on these tetrahedra. According to a local error estimator the triangulation is automatically adapted to the solution. Numerical results for standard problems appearing in vibrational motion and molecular structure calculations are presented and discussed. Relative precisions better than 1e-8 are obtained. For equilateral H$_3^{++}$ the adaptive FEM turns out to be superior to global basis set expansions in the literature. Our precise FEM results exclude in a definite manner the stability or metastability of equilateral H$_3^{++}$ in its groundstate. T3 - ZIB-Report - SC-94-10 Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-1403 ER - TY - JOUR A1 - Ackermann, Jörg A1 - Erdmann, Bodo A1 - Roitzsch, Rainer T1 - A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions JF - J. Chem. Phys. Y1 - 1994 VL - 101 SP - 7643 EP - 7650 ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - A quantitative evaluation of 3D soft tissue prediction in maxillofacial surgery planning T2 - Proc. 3. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboter-assistierte Chirurgie e.V. Y1 - 2004 CY - München ER - TY - GEN A1 - Bornemann, Folkmar A. A1 - Erdmann, Bodo A1 - Kornhuber, Ralf T1 - A Posteriori Error Estimates for Elliptic Problems. N2 - {\def\enorm {\mathop{\mbox{\boldmath{$|\!|$}}}\nolimits} Let $u \in H$ be the exact solution of a given self--adjoint elliptic boundary value problem, which is approximated by some $\tilde{u} \in {\cal S}$, $\cal S$ being a suitable finite element space. Efficient and reliable a posteriori estimates of the error $\enorm u - \tilde{u}\enorm $, measuring the (local) quality of $\tilde{u}$, play a crucial role in termination criteria and in the adaptive refinement of the underlying mesh. A well--known class of error estimates can be derived systematically by localizing the discretized defect problem using domain decomposition techniques. In the present paper, we provide a guideline for the theoretical analysis of such error estimates. We further clarify the relation to other concepts. Our analysis leads to new error estimates, which are specially suited to three space dimensions. The theoretical results are illustrated by numerical computations.} T3 - ZIB-Report - SC-93-29 Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-1257 ER -