TY - GEN A1 - Kober, Cornelia A1 - Erdmann, Bodo A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - Simulation of the Human Mandible: Comparison of Bone Mineral Density and Stress/Strain Profiles due to Masticatory Muscles' Traction N2 - The correlation of the inner architecture of bone and its functional loading was already stated by Wolff in 1892. Our objective is to demonstrate this interdependence in the case of the human mandible. For this purpose, stress/strain profiles occuring at a human lateral bite were simulated. Additionally, by a combination of computer graphics modules, a three--dimensional volumetric visualization of bone mineral density could be given. Qualitative correspondences between the density profile of the jaw and the simulated stress/strain profiles could be pointed out. In the long run, this might enable the use of the simulation for diagnosis and prognosis. The solution of the underlying partial differential equations describing linear elastic material behaviour was provided by an adaptive finite element method. Estimates of the discretization errors, local grid refinement, and multilevel techniques guaranteed the reliability and efficiency of the method. T3 - ZIB-Report - 03-23 KW - linear elasticity KW - finite element method KW - adaptive grid refinement KW - stress/strain analysis KW - human mandible Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7458 ER - TY - GEN A1 - Erdmann, Bodo A1 - Kober, Cornelia A1 - Lang, Jens A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian A1 - Deuflhard, Peter T1 - Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible N2 - By computed tomography data (CT), the individual geometry of the mandible is quite well reproduced, also the separation between cortical and trabecular bone. Using anatomical knowledge about the architecture and the functional potential of the masticatory muscles, realistic situations were approximated. The solution of the underlying partial differential equations describing linear elastic material behaviour is provided by an adaptive finite element method. Estimations of the discretization error, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method. T3 - ZIB-Report - 01-14 KW - mandible KW - sensitivity analysis KW - finite element method KW - adaptive grid refinement Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6403 ER -