TY - JOUR A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Djurdjevac, Ana A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - From interacting agents to density-based modeling with stochastic PDEs JF - Communications in Applied Mathematics and Computational Science N2 - Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models. Y1 - 2021 U6 - https://doi.org/10.2140/camcos.2021.16.1 VL - 16 IS - 1 SP - 1 EP - 32 ER - TY - GEN A1 - Helfmann, Luzie A1 - Djurdjevac Conrad, Natasa A1 - Djurdjevac, Ana A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - From interacting agents to density-based modeling with stochastic PDEs N2 - Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models. T3 - ZIB-Report - 19-21 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73456 SN - 1438-0064 ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Köppl, Jonas A1 - Djurdjevac, Ana T1 - Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise JF - Entropy N2 - We introduce an agent-based model for co-evolving opinions and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents’ movements are governed by the positions and opinions of other agents and similarly, the opinion dynamics are influenced by agents’ spatial proximity and their opinion similarity. Using numerical simulations and formal analyses, we study this feedback loop between opinion dynamics and the mobility of agents in a social space. We investigate the behaviour of this ABM in different regimes and explore the influence of various factors on the appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution, and, in the limit of infinite number of agents, we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples, we show that a resulting PDE model is a good approximation of the original ABM. Y1 - 2022 U6 - https://doi.org/10.3390/e24101352 VL - 24(10) ER -