TY - GEN A1 - Djurdjevac Conrad, Natasa A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Modularity of Directed Networks: Cycle Decomposition Approach N2 - The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network. T3 - ZIB-Report - 14-31 KW - directed networks, modules, cycle decomposition, measure of node communication Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-51166 SN - 1438-0064 ER - TY - GEN A1 - Banisch, Ralf A1 - Djurdjevac Conrad, Natasa A1 - Schütte, Christof T1 - Reactive flows and unproductive cycles for random walks on complex networks N2 - We present a comprehensive theory for analysis and understanding of transition events between an initial set A and a target set B for general ergodic finite-state space Markov chains or jump processes, including random walks on networks as they occur, e.g., in Markov State Modelling in molecular dynamics. The theory allows us to decompose the probability flow generated by transition events between the sets A and B into the productive part that directly flows from A to B through reaction pathways and the unproductive part that runs in loops and is supported on cycles of the underlying network. It applies to random walks on directed networks and nonreversible Markov processes and can be seen as an extension of Transition Path Theory. Information on reaction pathways and unproductive cycles results from the stochastic cycle decomposition of the underlying network which also allows to compute their corresponding weight, thus characterizing completely which structure is used how often in transition events. The new theory is illustrated by an application to a Markov State Model resulting from weakly damped Langevin dynamics where the unproductive cycles are associated with periodic orbits of the underlying Hamiltonian dynamics. T3 - ZIB-Report - 15-19 KW - Complex networks KW - molecular transition networks KW - transition path theory KW - cycle decomposition KW - reactive trajectories KW - Markow State Methods Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54239 SN - 1438-0064 ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Weber, Marcus A1 - Schütte, Christof T1 - Finding dominant structures of nonreversible Markov processes JF - Multiscale Modeling and Simulation Y1 - 2016 U6 - https://doi.org/10.1137/15M1032272 VL - 14 IS - 4 SP - 1319 EP - 1340 ER - TY - GEN A1 - Banisch, Ralf A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Module Detection in Directed Real-World Networks N2 - We investigate the problem of finding modules (or clusters, communities) in directed networks. Until now, most articles on this topic have been oriented towards finding complete network partitions despite the fact that this often is unwanted. We present a novel random walk based approach for non-complete partitions of the directed network into modules in which some nodes do not belong to only one of the modules but to several or to none at all. The new random walk process is reversible even for directed networks but inherits all necessary information about directions and structure of the original network. We demonstrate the performance of the new method in application to a real-world earthquake network. T3 - ZIB-Report - 14-13 KW - Module identification and classification KW - cycle decomposition KW - communication KW - directed networks Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49849 SN - 1438-0064 ER - TY - THES A1 - Djurdjevac Conrad, Natasa T1 - Methods for analyzing complex networks using random walker Y1 - 2012 ER - TY - JOUR A1 - Banisch, Ralf A1 - Djurdjevac Conrad, Natasa T1 - Cycle-flow-based module detection in directed recurrence networks JF - EPL (Europhysics Letters) Y1 - 2014 U6 - https://doi.org/10.1209/0295-5075/108/68008 VL - 108 IS - 6 ER - TY - JOUR A1 - Lorenz, Philipp A1 - Wolf, Frederik A1 - Braun, Jonas A1 - Djurdjevac Conrad, Natasa A1 - Hövel, Philipp T1 - Capturing the Dynamics of Hashtag-Communities JF - International Workshop on Complex Networks and their Applications Y1 - 2017 U6 - https://doi.org/10.1007/978-3-319-72150-7_33 SP - 401 EP - 413 ER - TY - GEN A1 - Djurdjevac Conrad, Natasa A1 - Weber, Marcus A1 - Schütte, Christof T1 - Finding dominant structures of nonreversible Markov processes N2 - Finding metastable sets as dominant structures of Markov processes has been shown to be especially useful in modeling interesting slow dynamics of various real world complex processes. Furthermore, coarse graining of such processes based on their dominant structures leads to better understanding and dimension reduction of observed systems. However, in many cases, e.g. for nonreversible Markov processes, dominant structures are often not formed by metastable sets but by important cycles or mixture of both. This paper aims at understanding and identifying these different types of dominant structures for reversible as well as nonreversible ergodic Markov processes. Our algorithmic approach generalizes spectral based methods for reversible process by using Schur decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical construction of our new approach by numerical experiments. T3 - ZIB-Report - 15-40 KW - nonreversible Markov processes KW - metastable sets KW - cycle decomposition KW - Schur decomposition Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55739 SN - 1438-0064 ER - TY - JOUR A1 - Djurdjevac Conrad, Natasa A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Modularity of Directed Networks: Cycle Decomposition Approach JF - Journal of Computational Dynamics 2 (2015) pp. 1-24 N2 - The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network. Y1 - 2015 U6 - https://doi.org/10.3934/jcd.2015.2.1 ER - TY - JOUR A1 - Banisch, Ralf A1 - Djurdjevac Conrad, Natasa A1 - Schütte, Christof T1 - Reactive flows and unproductive cycles for random walks on complex networks JF - The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387 Y1 - 2015 U6 - https://doi.org/10.1140/epjst/e2015-02417-8 ER -