TY - CHAP A1 - Manley, Phillip A1 - Burger, Sven A1 - Schmidt, Frank A1 - Schmid, Martina ED - Sakabe, Shuji ED - Lienau, Christoph ED - Grunwald, Rüdiger T1 - Design Principles for Plasmonic Nanoparticle Devices T2 - Progress in Nonlinear Nano-Optics Y1 - 2015 UR - http://www.springer.com/978-3-319-12216-8 U6 - https://doi.org/10.1007/978-3-319-12217-5_13 VL - XXI SP - 223 EP - 247 PB - Springer ET - Nano-Optics and Nanophotonics ER - TY - CHAP A1 - Ledentsov, Jr., Nikolay A1 - Kropp, Jörg-R. A1 - Shchukin, Vitaly A1 - Steinle, Gunther A1 - Ledentsov, Jr., Nikolay A1 - Turkiewicz, Jarek P. A1 - Wu, Bo A1 - Shaofeng, Qiu A1 - Ma, Yanan A1 - Zhiyong, Feng A1 - Burger, Sven A1 - Schmidt, Frank A1 - Caspar, Christoph A1 - Freund, Ronald A1 - Choquette, Kent D. T1 - High-speed modulation, wavelength, and mode control in vertical-cavity surface-emitting lasers T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2082951 VL - 9381 SP - 93810F ER - TY - CHAP A1 - Shchukin, Vitaly A1 - Ledentsov, Jr., Nikolay A1 - Kropp, Jörg-R. A1 - Steinle, Gunther A1 - Ledentsov, Jr., Nikolay A1 - Choquette, Kent D. A1 - Burger, Sven A1 - Schmidt, Frank T1 - Engineering of optical modes in vertical-cavity microresonators by aperture placement: applications to single-mode and near-field lasers T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2077012 VL - 9381 SP - 93810V ER - TY - CHAP A1 - Burger, Sven A1 - Zschiedrich, Lin A1 - Pomplun, Jan A1 - Herrmann, Sven A1 - Schmidt, Frank T1 - hp-finite element method for simulating light scattering from complex 3D structures T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2085795 VL - 9424 SP - 94240Z ER - TY - CHAP A1 - Poulikakos, Lisa A1 - Gutsche, Philipp A1 - McPeak, Kevin A1 - Burger, Sven A1 - Niegemann, Jens A1 - Hafner, Christian A1 - Norris, David T1 - A Far-Field Interpretation of Optical Chirality in Analogy to Poynting’s Theorem T2 - META '15 Proceedings N2 - The optical chirality density is a valuable tool in locally characterizing chiral electromagnetic near-fields. However, how this quantity could translate into the far-field is not well understood. Here, we formulate a far-field interpretation of optical chirality by investigating its conservation law in isotropic media in analogy to Poynting’s Theorem. We define the global chirality and find that lossy materials, in particular plasmonic nanostructures, can act as chirality generators. This can enable chiral sensing applications at the single molecule level. Y1 - 2015 SP - 1215 EP - 1216 ER - TY - GEN A1 - Poulikakos, Lisa A1 - Gutsche, Philipp A1 - McPeak, Kevin A1 - Burger, Sven A1 - Niegemann, Jens A1 - Hafner, Christian A1 - Norris, David T1 - A Far-Field Interpretation of the Optical Chirality T2 - Frontiers in Nanophotonics (Congressi Stefano Franscini) N2 - A chiral structure is not super-imposable with its mirror image. Most commonly found in organic molecules, chirality can also occur in other systems, such as electromagnetic fields, where circularly polarized light is the most widespread example. Chiral electromagnetic fields can be a useful tool for biosensing applications. In particular, it has been shown that chiral plasmonic nanostructures have the ability to produce strongly enhanced chiral near-fields. Recently, our group has developed chiral plasmonic nanopyramids, which have the ability to focus chiral near-fields at their tip. This could enable chiral sensing at the single-molecule level. Chiral near-fields can be characterized in terms of the “optical chirality density”. This time-even and parity-odd pseudoscalar was first derived by Lipkin and was found to follow a conservation law analogous to the energy conservation of electromagnetic fields. More recently, Tang and Cohen identified the physical meaning of the “optical chirality density” as the degree of asymmetry in the excitation rate of a chiral molecule. However, how this near-field interpretation of the optical chirality could translate into the far-field is not well understood. Here, we formulate a far-field interpretation by investigating the conservation law for optical chirality in matter, and performing time-averaging in analogy to Poynting’s Theorem. In parallel to extinction energy, we define the “global chirality” as the sum of chirality dissipation within a material and the chirality flux leaving the system. With finite-element simulations, we place a dipole source at locations of enhanced local chirality and investigate the global chirality and ellipticity of emitted light in the far-field. Interestingly, we find that lossy materials with a complex dielectric function have the ability to generate global chirality when excited by achiral light. In particular, chiral plasmonic nanostructures are found to act as effective global chirality generators. The global interpretation of optical chirality provides a useful tool for biosensing applications with chiral plasmonic nanostructures, where the detection is routinely performed in the far-field. Y1 - 2015 ER - TY - JOUR A1 - McPeak, Kevin A1 - van Engers, Christian D. A1 - Bianchi, Sarah A1 - Rossinelli, Aurelio A1 - Poulikakos, Lisa A1 - Bernard, Laetitia A1 - Herrmann, Sven A1 - Kim, David K. A1 - Burger, Sven A1 - Blome, Mark A1 - Jayanti, Sriharsha V. A1 - Norris, David T1 - Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection JF - Adv. Mater. Y1 - 2015 U6 - https://doi.org/10.1002/adma.201503493 VL - 27 SP - 6244 ER - TY - CHAP A1 - Burger, Sven A1 - Gutsche, Philipp A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank A1 - Wohlfeil, Benjamin A1 - Zschiedrich, Lin T1 - Hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2190119 VL - 9630 SP - 96300S ER - TY - CHAP A1 - Burger, Sven A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank T1 - Reduced basis methods for optimization of nano-photonic devices T2 - Proc. Int. Conf. Numerical Simulation of Optoelectronic Devices (NUSOD) Y1 - 2015 U6 - https://doi.org/10.1109/NUSOD.2015.7292871 SP - 159 ER - TY - CHAP A1 - Jäger, Klaus A1 - Barth, Carlo A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Sinusoidal Nanotextures for Coupling Light into c-Si Thin-Film Solar Cells T2 - Light, Energy and the Environement 2015 Y1 - 2015 U6 - https://doi.org/10.1364/PV.2015.PTu4B.3 SP - PTu4B.3 ER - TY - CHAP A1 - Barth, Carlo A1 - Jäger, Klaus A1 - Burger, Sven A1 - Hammerschmidt, Martin A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Design of Photonic Crystals with Near-Surface Field Enhancement T2 - Light, Energy and the Environement 2015 Y1 - 2015 U6 - https://doi.org/10.1364/PV.2015.JTu5A.9 SP - JTu5A.9 ER - TY - CHAP A1 - Thoma, Alexander A1 - Schnauber, Peter A1 - Gschrey, Manuel A1 - Schmidt, Ronny A1 - Wohlfeil, Benjamin A1 - Seifried, Marc A1 - Schulze, Jan-Hindrick A1 - Burger, Sven A1 - Schmidt, Frank A1 - Strittmatter, Andre A1 - Rodt, Sven A1 - Heindel, Tobias A1 - Reitzenstein, Stephan T1 - Indistinguishable Photons from Deterministic Quantum Dot Microlenses T2 - European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference Y1 - 2015 U6 - https://doi.org/10.1364/IPRSN.2015.IS4A.6 SP - EA_8_5 ER - TY - CHAP A1 - Agcos, Emil A1 - Bodermann, Bernd A1 - Burger, Sven A1 - Dai, Gaoliang A1 - Endres, Johannes A1 - Hansen, Poul-Erik A1 - Nielson, Lars A1 - Madsen, Morten A1 - Heidenreich, Sebastian A1 - Krumrey, Michael A1 - Loechel, Bernd A1 - Probst, Jürgen A1 - Scholze, Frank A1 - Soltwisch, Victor A1 - Wurm, Matthias T1 - Scatterometry reference standards to improve tool matching and traceability in lithographical nanomanufacturing T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2190409 VL - 9556 SP - 955610 ER - TY - JOUR A1 - Petrik, Peter A1 - Kumar, Nitish A1 - Fried, Miklos A1 - Fodor, Bálint A1 - Juhász, György A1 - Pereira, Silvania A1 - Burger, Sven A1 - Urbach, H. Paul T1 - Fourier ellipsometry – an ellipsometric approach to Fourier scatterometry JF - J. Eur. Opt. Soc.-Rapid Y1 - 2015 U6 - https://doi.org/10.2971/jeos.2015.15002 VL - 10 SP - 15002 ER - TY - JOUR A1 - Gschrey, Manuel A1 - Thoma, Alexander A1 - Schnauber, Peter A1 - Seifried, Marc A1 - Schmidt, Ronny A1 - Wohlfeil, Benjamin A1 - Krüger, Luzy A1 - Schulze, Jan-Hindrick A1 - Heindel, Tobias A1 - Burger, Sven A1 - Schmidt, Frank A1 - Strittmatter, Andre A1 - Rodt, Sven A1 - Reitzenstein, Stephan T1 - Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography JF - Nature Communications Y1 - 2015 U6 - https://doi.org/10.1038/ncomms8662 VL - 6 SP - 7662 ER - TY - CHAP A1 - Thoma, Alexander A1 - Schnauber, Peter A1 - Gschrey, Manuel A1 - Schmidt, Ronny A1 - Wohlfeil, Benjamin A1 - Seifried, Marc A1 - Schulze, Jan-Hindrick A1 - Burger, Sven A1 - Schmidt, Frank A1 - Strittmatter, Andre A1 - Rodt, Sven A1 - Heindel, Tobias A1 - Reitzenstein, Stephan T1 - Indistinguishable Photons from Deterministically Fabricated Quantum Dot Microlenses T2 - Advanced Photonics Y1 - 2015 U6 - https://doi.org/10.1364/IPRSN.2015.IS4A.6 SP - IS4A.6 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Schmidt, Frank T1 - Reduced basis method for Maxwell's equations with resonance phenomena T2 - Proc. SPIE N2 - Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM) is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output relationships which can be evaluated orders of magnitude faster than the full model. This is advantageous in applications requiring the solution of Maxwell's equations for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D Maxwell's equations based on the finite element method which allows variations of geometric as well as material and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem exhibiting a resonance in the electric field. T3 - ZIB-Report - 15-37 KW - reduced basis method KW - finite element method KW - maxwell equation KW - photonic crystal KW - nano-photonics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55687 SN - 1438-0064 VL - 9630 SP - 96300R ER -