TY - CHAP A1 - Bley, Andreas T1 - On the Hardness of Finding Small Shortest Path Routing Conflicts T2 - Proceedings of 4th International Network Optimization Conference (INOC2009) N2 - Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6. Y1 - 2009 ER - TY - CHAP A1 - Bley, Andreas A1 - D'Andreagiovanni, Fabio A1 - Karch, Daniel T1 - WDM Fiber Replacement Scheduling T2 - Proceedings of INOC 2013 Y1 - 2013 U6 - https://doi.org/10.1016/j.endm.2013.05.092 VL - 41 SP - 189 EP - 196 ER - TY - GEN A1 - Bley, Andreas A1 - D'Andreagiovanni, Fabio A1 - Karch, Daniel T1 - Scheduling technology migration in WDM Networks N2 - The rapid technological evolution of telecommunication networks demands service providers to regularly update their technology, with the aim of remaining competitive in the marketplace. However, upgrading the technology in a network is not a trivial task. New hardware components need to be installed in the network and during the installation network connectivity may be temporarily compromised. The Wavelength Division Multiplexing (WDM) technology, whose upgrade is considered in here, shares fiber links among several optical connections and tearing down a single link may disrupt several optical connections at once. When the upgrades involve large parts of a network, typically not all links can be upgraded in parallel, which may lead to an unavoidable longer disruption of some connections. A bad scheduling of the overall endeavor, however, can dramatically increase the disconnection time of parts of the networks, causing extended service disruption. In this contribution, we study the problem of finding a schedule of the fiber link upgrades that minimizes the total service disruption time. To the best of our knowledge, this problem has not yet been formalized and investigated. The aim of our work is to close this gap by presenting a mathematical optimization model for the problem and an innovative solution algorithm that tackles the intrinsic difficulties of the problem. Computational experience on realistic instances completes our study. Our original investigations have been driven by real needs of DFN, operator of the German National Research and Education Network and our partner in the BMBF research project ROBUKOM (http://www.robukom.de/). T3 - ZIB-Report - 13-62 KW - Scheduling, Extended Formulations, Network Migration, WDM Networks Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42654 UR - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6507677&isnumber=6507670 SN - 1438-0064 ER - TY - CHAP A1 - Bley, Andreas A1 - Menne, Ulrich A1 - Klähne, Roman A1 - Raack, Christian A1 - Wessäly, Roland T1 - Multi-layer network design – A model-based optimization approach T2 - Proceedings of the PGTS 2008, Berlin, Germany Y1 - 2008 SP - 107 EP - 116 PB - Polish-German Teletraffic Symposium CY - Berlin, Germany ER - TY - GEN A1 - Bley, Andreas T1 - An Integer Programming Algorithm for Routing Optimization in IP Networks N2 - Most data networks nowadays use shortest path protocols to route the traffic. Given administrative routing lengths for the links of the network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. In this paper, we present an integer programming algorithm for the minimum congestion unsplittable shortest path routing problem, which arises in the operational planning of such networks. Given a capacitated directed graph and a set of communication demands, the goal is to find routing lengths that define a unique shortest path for each demand and minimize the maximum congestion over all links in the resulting routing. We illustrate the general decomposition approach our algorithm is based on, present the integer and linear programming models used to solve the master and the client problem, and discuss the most important implementational aspects. Finally, we report computational results for various benchmark problems, which demonstrate the efficiency of our algorithm. T3 - ZIB-Report - 08-30 KW - Shortest Path Routing KW - Integer Programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10814 SN - 1438-0064 ER - TY - THES A1 - Bley, Andreas T1 - Routing and Capacity Optimization for IP Networks N2 - This thesis is concerned with dimensioning and routing optimization problems for communication networks that employ a shortest path routing protocol such as OSPF, IS-IS, or RIP. These protocols are widely used in the Internet. With these routing protocols, all end-to-end data streams are routed along shortest paths with respect to a metric of link lengths. The network administrator can configure the routing only by modifying this metric. In this thesis we consider the unsplittable shortest path routing variant, where each communication demand must be sent unsplit through the network. This requires that all shortest paths are uniquely determined. The major difficulties in planning such networks are that the routing can be controlled only indirectly via the routing metric and that all routing paths depend on the same routing metric. This leads to rather complicated and subtle interdependencies among the paths that comprise a valid routing. In contrast to most other routing schemes, the paths for different communication demands cannot be configured independent of each other. Part I of the thesis is dedicated to the relation between path sets and routing metrics and to the combinatorial properties of those path sets that comprise a valid unsplittable shortest path routing. Besides reviewing known approaches to find a compatible metric for a given path set (or to prove that none exists) and discussing some properties of valid path sets, we show that the problem of finding a compatible metric with integer lengths as small as possible and the problem of finding a smallest possible conflict in the given path set are both NP-hard to approximate within a constant factor. In Part II of the thesis we discuss the relation between unsplittable shortest path routing and several other routing schemes and we analyze the computational complexity of three basic unsplittable shortest path routing problems. We show that the lowest congestion that can be obtained with unsplittable shortest path routing may significantly exceed that achievable with other routing paradigms and we prove several non-approximability results for unsplittable shortest path routing problems that are stronger than those for the corresponding unsplittable flow problems. In addition, we derive various polynomial time approximation algorithms for general and special cases of these problems. In Part III of the thesis we finally develop an integer linear programming approach to solve these and more realistic unsplittable shortest path routing problems to optimality. We present alternative formulations for these problems, discuss their strength and computational complexity, and show how to derive strong valid inequalities. Eventually, we describe our implementation of this solution approach and report on the numerical results obtained for real-world problems that came up in the planning the German National Research and Education Networks G-WiN and X-WiN and for several benchmark instances. N2 - Die Arbeit befasst sich mit der Kapazitäts- und Routenplanung für Kommunikationsnetze, die ein kürzeste-Wege Routingprotokoll verwenden. Diese Art von Protokollen ist im Internet weit verbreitet. Bei diesen Routingverfahren wird für jede Verbindung im Netz ein Längenwert festgelegt, diese Längen formen die sogenannte Routingmetrik. Die Routingwege der Kommunikationsbedarfe sind dann die jeweiligen kürzesten Wege bezüglich dieser Metrik. Bei der in der Arbeit untersuchten Variante dieser Routingprotokolle wird zusätzlich verlangt, dass es je Kommunikationsbedarf genau einen eindeutigen kürzesten Weg gibt. Die Schwierigkeit bei der Planung solcher Netze besteht darin, dass sich die Routingwege einerseits nur indirekt über die Routingmetrik beeinflussen lassen, andererseits aber alle Routingwege von der gleichen Metrik abhängen. Dadurch können die Wege verschiedener Kommunikationsanforderungen nicht wie bei anderen Routingverfahren unabhängig voneinander gewählt werden. Im erstem Teil der Arbeit werden der Zusammenhang zwischen gegebenen Wegesystemen und kompatiblen Routingmetriken sowie die Beziehungen der Wege eines zulässigen eindeutige-kürzeste-Wege-Routings untereinander untersucht. Dabei wird unter Anderem gezeigt, dass es NP-schwer ist, eine kompatible Metrik mit kleinstmöglichen Routinglängen zu einem gegebenen Wegesystem zu finden. Es wird auch bewiesen, dass das Finden eines kleinstmöglichen Konfliktes in einem gegebenen Wegesystem, zu dem keine kompatible Metrik existiert, NP-schwer ist. Im zweiten Teil der Arbeit wird die Approximierbarkeit von drei grundlegenden Netz- und Routenplanungsproblemen mit eindeutige-kürzeste-Wege-Routing untersucht. Für diese Probleme werden stärkere Nichtapproximierbarkeitsresultate als für die entsprechenden Einwege-Routing Probleme bewiesen und es werden verschiedene polynomiale Approximationsverfahren für allgemeine und Spezialfälle entworfen. Ausserdem wird die Beziehung zwischen eindeutige-kürzeste-Wege-Routing und anderen Routingverfahren diskutiert. Im dritten und letzten Teil der Arbeit wird ein (gemischt-) ganzzahliger Lösungsansatz für Planungsprobleme mit eindeutige-kürzeste-Wege-Routing vorgestellt. Für die im zweiten Teil diskutierten grundlegenden Netz- und Routenplanungsprobleme werden verschiedene (gemischt-) ganzzahlige lineare Modelle vorgestellt und es wird deren Lösbarkeit und die Stärke ihrer LP Relaxierungen untersucht. Es wird auch gezeigt, wie sich starke gültig Ungleichungen aus den in diesen Modellen enthalten Substrukturen ableiten lassen. Schlielich werden am Ende der Arbeit die Software-Implementierung dieses Lösungsverfahrens für eine praxisrelevante Verallgemeinerung der Planungsprobleme sowie die damit erzielten numerischen Ergebnisse vorgestellt und diskutiert. KW - kombinatorische Optimierung KW - gemischt-ganzzahlige Programmierung KW - kürzeste-Wege Routing KW - Approximationsalgorithmen KW - combinatorial optimization KW - mixed-integer programming KW - shortest path routing KW - approximation algorithms Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:83-opus-15530 SN - 978-3-86727-281-0 ER - TY - GEN A1 - Bley, Andreas T1 - Routing and Capacity Optimization for IP networks N2 - This article describes the main concepts and techniques that have been developed during the last year at ZIB to solve dimensioning and routing optimization problems for IP networks. We discuss the problem of deciding if a given path set corresponds to an unsplittable shortest path routing, the fundamental properties of such path sets, and the computational complexity of some basic network planning problems for this routing type. Then we describe an integer-linear programming approach to solve such problems in practice. This approach has been used successfully in the planning of the German national education and research network for several years. T3 - ZIB-Report - 07-33 KW - kombinatorische Optimierung KW - gemischt-ganzzahlige Programmierung KW - kürzeste-Wege Routing KW - Approximationsalgorithmen KW - combinatorial optimization KW - mixed-integer programming KW - shortest path routing KW - approximation algorithms Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10323 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas T1 - On the Hardness of Finding Small Shortest Path Routing Conflicts N2 - Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6. T3 - ZIB-Report - 09-15 KW - shortest path routing KW - computational complexity Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11276 SN - 1438-0064 ER - TY - CHAP A1 - Matuschke, Jannik A1 - Bley, Andreas A1 - Müller, Benjamin ED - Bodlaender, Hans L. ED - Italiano, Giuseppe F. T1 - Approximation Algorithms for Facility Location with Capacitated and Length-Bounded Tree Connections N2 - We consider a generalization of the uncapacitated facility location problem that occurs in planning of optical access networks in telecommunications. Clients are connected to open facilities via depth-bounded trees. The total demand of clients served by a tree must not exceed a given tree capacity. We investigate a framework for combining facility location algorithms with a tree-based clustering approach and derive approximation algorithms for several variants of the problem, using techniques for approximating shallow-light Steiner trees via layer graphs, simultaneous approximation of shortest paths and minimum spanning trees, and greedy coverings. Y1 - 2013 U6 - https://doi.org/10.1007/978-3-642-40450-4_60 VL - Algorithms -- ESA 2013 SP - 707 EP - 718 PB - Springer ER - TY - GEN A1 - Werner, Axel A1 - Aurzada, Frank A1 - Bley, Andreas A1 - Eisenblätter, Andreas A1 - Geerdes, Hans-Florian A1 - Guillemard, Mijail A1 - Kutyniok, Gitta A1 - Philipp, Friedrich A1 - Raack, Christian A1 - Scheutzow, Michael ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - Mathematics for telecommunications T2 - MATHEON - Mathematics for Key Technologies Y1 - 2014 U6 - https://doi.org/10.4171/137 VL - 1 SP - 75 EP - 89 PB - European Mathematical Society ET - EMS Series in Industrial and Applied Mathematics ER -