TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Wessäly, Roland T1 - Large-scale hierarchical networks: How to compute an optimal architecture? N2 - In this article, we present a mathematical model and an algorithm to support one of the central strategic planning decisions of network operators: How to organize a large number of locations into a hierarchical network? We propose a solution approach that is based on mixed-integer programming and Lagrangian relaxation techniques. As major advantage, our approach provides not only solutions but also worst-case quality guarantees. Real-world scenarios with more than 750 locations have been solved within 30 minutes to less than 1\% off optimality. T3 - ZIB-Report - 04-04 KW - Hierarchical Networks KW - Mixed-Integer Programming KW - Lagrangian Relaxation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7799 ER - TY - GEN A1 - Bley, Andreas T1 - Approximability of Unsplittable Shortest Path Routing Problems N2 - In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to other routing schemes and study the approximability of three USPR network planning problems. Given a digraph $D=(V,A)$ and a set $K$ of directed commodities, an USPR is a set of flow paths $\Phi_{(s,t)}$, $(s,t)\in K$, such that there exists a metric $\lambda=(\lambda_a)\in \mathbb{Z}^A_+$ with respect to which each $\Phi_{(s,t)}$ is the unique shortest $(s,t)$-path. In the \textsc{Min-Con-USPR} problem, we seek for an USPR that minimizes the maximum congestion over all arcs. We show that this problem is hard to approximate within a factor of $\mathcal{O}(|V|^{1-\epsilon})$, but easily approximable within min$(|A|,|K|)$ in general and within $\mathcal{O}(1)$ if the underlying graph is an undirected cycle or a bidirected ring. We also construct examples where the minimum congestion that can be obtained by USPR is a factor of $\Omega(|V|^2)$ larger than that achievable by unsplittable flow routing or by shortest multi-path routing, and a factor of $\Omega(|V|)$ larger than by unsplittable source-invariant routing. In the CAP-USPR problem, we seek for a minimum cost installation of integer arc capacities that admit an USPR of the given commodities. We prove that this problem is $\mathcal{NP}$-hard to approximate within $2-\epsilon$ (even in the undirected case), and we devise approximation algorithms for various special cases. The fixed charge network design problem \textsc{Cap-USPR}, where the task is to find a minimum cost subgraph of $D$ whose fixed arc capacities admit an USPR of the commodities, is shown to be $\mathcal{NPO}$-complete. All three problems are of great practical interest in the planning of telecommunication networks that are based on shortest path routing protocols. Our results indicate that they are harder than the corresponding unsplittable flow or shortest multi-path routing problems. T3 - ZIB-Report - 06-02 KW - Shortest path routing KW - unsplittable flow KW - computational complexity KW - approximation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8968 ER - TY - GEN A1 - Bley, Andreas A1 - Pattloch, Marcus T1 - Modellierung und Optimierung der X-WiN Plattform N2 - In diesem Artikel werden die Optimierungsmodelle und -verfahren beschrieben, die bei der Planung des Kernnetzes und der Zugangsinfrastruktur des X-WiN verwendet wurden. T3 - ZIB-Report - 05-21 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8551 ER - TY - CHAP A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Wessäly, Roland ED - Kaindl, H. T1 - Large-Scale hierarchical networks: How to compute an optimal architecture? T2 - Networks 2004 Y1 - 2004 SN - 3-8007-2840-0 SP - 429 EP - 434 PB - VDE Verlag CY - Berlin ER - TY - GEN A1 - Bley, Andreas T1 - On the Complexity of Vertex-Disjoint Length-Restricted Path Problems N2 - Let $G=(V,E)$ be a simple graph and $s$ and $t$ be two distinct vertices of $G$. A path in $G$ is called $\ell$-bounded for some $\ell\in\mathbb{N}$, if it does not contain more than $\ell$ edges. We study the computational complexity of approximating the optimum value for two optimization problems of finding sets of vertex-disjoint $\ell$-bounded $s,t$-paths in $G$. First, we show that computing the maximum number of vertex-disjoint $\ell$-bounded $s,t$-paths is $\mathcal{AP\kern-1pt X}$--complete for any fixed length bound $\ell\geq 5$. Second, for a given number $k\in\mathbb{N}$, $1\leq k \leq |V|-1$, and non-negative weights on the edges of $G$, the problem of finding $k$ vertex-disjoint $\ell$-bounded $s,t$-paths with minimal total weight is proven to be $\mathcal{NPO}$--complete for any length bound $\ell\geq 5$. Furthermore, we show that, even if $G$ is complete, it is $\mathcal{NP}$--complete to approximate the optimal solution value of this problem within a factor of $2^{\langle\phi\rangle^\epsilon}$ for any constant $0<\epsilon<1$, where $\langle\phi\rangle$ denotes the encoding size of the given problem instance $\phi$. We prove that these results are tight in the sense that for lengths $\ell\leq 4$ both problems are polynomially solvable, assuming that the weights satisfy a generalized triangle inequality in the weighted problem. All results presented also hold for directed and non-simple graphs. For the analogous problems where the path length restriction is replaced by the condition that all paths must have length equal to $\ell$ or where vertex-disjointness is replaced by edge-disjointness we obtain similar results. T3 - ZIB-Report - SC-98-20 KW - disjoint paths KW - length bounded paths KW - approximation KW - reducibility KW - completeness Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3639 ER - TY - GEN A1 - Bley, Andreas A1 - Grötschel, Martin A1 - Wessäly, Roland T1 - Design of Broadband Virtual Private Networks: Model and Heuristics for the B–WiN N2 - We investigate the problem of designing survivable broadband virtual private networks that employ the Open Shortest Path First (OSPF) routing protocol to route the packages. The capacities available for the links of the network are a minimal capacity plus multiples of a unit capacity. Given the directed communication demands between all pairs of nodes, we wish to select the capacities in a such way, that even in case of a single node or a single link failure a specified percentage of each demand can be satisfied and the costs for these capacities are minimal. We present a mixed--integer linear programming formulation of this problem and several heuristics for its solution. Furthermore, we report on computational results with real-world data. T3 - ZIB-Report - SC-98-13 KW - Telecommunication Network Design KW - Survivable Networks KW - Network Capacity Planning KW - OSPF Routing KW - Shortest Path Routing KW - Heuristics Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3565 ER - TY - CHAP A1 - Bley, Andreas A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Vigerske, Stefan T1 - Comparing MIQCP Solvers to a Specialised Algorithm for Mine Production Scheduling T2 - Modeling, Simulation and Optimization of Complex Processes. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam N2 - In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm. Y1 - 2012 U6 - https://doi.org/10.1007/978-3-642-25707-0_3 SP - 25 EP - 39 ER - TY - GEN A1 - Bley, Andreas A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Vigerske, Stefan T1 - Comparing MIQCP solvers to a specialised algorithm for mine production scheduling N2 - In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm. T3 - ZIB-Report - 09-32 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11507 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas T1 - A Lagrangian Approach for Integrated Network Design and Routing in IP Networks N2 - We consider the problem of designing a network that employs a non-bifurcated shortest path routing protocol. The network's nodes and the set of potential links are given together with a set of forecasted end-to-end traffic demands. All relevant hardware components installable at links or nodes are considered. The goal is to simultaneously choose the network's topology, to decide which hardware components to install on which links and nodes, and to find appropriate routing weights such that the overall network cost is minimized. In this paper, we present a mathematical optimization model for this problem and an algorithmic solution approach based on a Lagrangian relaxation. Computational results achieved with this approach for several real-world network planning problems are reported. T3 - ZIB-Report - 03-29 KW - Network Planning KW - Routing KW - IP Routing KW - Lagrangian relaxation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7515 ER - TY - GEN A1 - Bley, Andreas A1 - Koster, Arie M.C.A. A1 - Kröller, Alexander A1 - Wessäly, Roland A1 - Zymolka, Adrian T1 - Kosten- und Qualitätsoptimierung in Kommunikationsnetzen N2 - Der scharfe Wettbewerb innerhalb der Telekommunikationsbranche zwingt die Netzbetreiber dazu, ihre Investitionen genau zu planen und immer wieder Einsparungsmanahmen durchzuführen. Gleichzeitig ist es jedoch wichtig, die Qualität der angebotenen Dienste zu verbessern, um neue Kunden zu gewinnen und langfristig an sich zu binden. Die mathematische Optimierung bietet sich für viele solcher Aufgabenstellungen als hervorragend geeignetes Planungswerkzeug an. Ziel dieses Artikels ist es, ihre Methodik und ihre Anwendung speziell zur Kosten- und Qualitätsoptimierung in Kommunikationsnetzen vorzustellen. Anhand von vier konkreten Planungsaufgaben aus dem Bereich der Festnetzplanung wird aufgezeigt, wie sich komplexe Zusammenhänge in flexiblen mathematischen Modellen abbilden lassen und welche Verfahren zur automatisierten Bearbeitung der Probleme eingesetzt werden können. Die hier vorgestellten Methoden zeichnen sich insbesondere dadurch aus, dass sie neben hochwertigen Lösungen auch eine Qualittsgarantie liefern, mit der sich die Lsungen fundiert bewerten lassen. Die dokumentierten Ergebnisse aus verschiedenen Industrieprojekten belegen die Eignung und Güte der mathematischen Optimierung für die Praxis. T3 - ZIB-Report - 03-31 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7537 ER -