TY - GEN A1 - Aboulhassan, Amal A1 - Baum, Daniel A1 - Wodo, Olga A1 - Ganapathysubramanian, Baskar A1 - Amassian, Aram A1 - Hadwiger, Markus T1 - A Novel Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar Cell Materials N2 - Current characterization methods of the so-called Bulk Heterojunction (BHJ), which is the main material of Organic Photovoltaic (OPV) solar cells, are limited to the analysis of global fabrication parameters. This reduces the efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks in the morphology of the material. In this paper, we propose a novel framework that fills this gap through visual characterization and exploration of local structure-performance correlations. We also propose a formula that correlates the structural features with the performance bottlenecks. Since research into BHJ materials is highly multidisciplinary, our framework enables a visual feedback strategy that allows scientists to build intuition about the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new BHJ characterizations. Furthermore, we show that our approach could substantially reduce the turnaround time. T3 - ZIB-Report - 15-20 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54353 SN - 1438-0064 ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Baum, Daniel A1 - Wodo, Olga A1 - Ganapathysubramanian, Baskar A1 - Amassian, Aram A1 - Hadwiger, Markus T1 - A Novel Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar Cell Materials JF - Computer Graphics Forum N2 - The current characterization methods of the Bulk Heterojunction (BHJ) - the main material of the new Organic Photovoltaic solar cells - are limited to the analysis of global fabrication parameters. This reduces the efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks in the morphology of the material. In this paper, we propose a novel framework that fills this gap through visual charac- terization and exploration of local structure-performance correlations. We propose a new formula that correlates the structural features to the performance bottlenecks. Since research into BHJ materials is highly multidisci- plinary, we enable a visual feedback strategy that allows the scientists to build intuition about the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new BHJ characteri- zations. We furthermore show that our approach could reduce the previous work-flow time from days to minutes. Y1 - 2015 U6 - https://doi.org/10.1111/cgf.12652 VL - 34 IS - 3 SP - 401 EP - 410 PB - Wiley ER - TY - GEN A1 - Aboulhassan, Amal A1 - Sicat, Ronell A1 - Baum, Daniel A1 - Wodo, Olga A1 - Hadwiger, Markus T1 - Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies N2 - The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state- of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths. T3 - ZIB-Report - 17-16 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63239 SN - 1438-0064 ER - TY - JOUR A1 - Aboulhassan, Amal A1 - Sicat, Ronell A1 - Baum, Daniel A1 - Wodo, Olga A1 - Hadwiger, Markus T1 - Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies JF - Computer Graphics Forum N2 - The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state- of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths. Y1 - 2017 U6 - https://doi.org/10.1111/cgf.13191 VL - 36 IS - 3 SP - 329 EP - 339 PB - Wiley ER - TY - CHAP A1 - Arlt, Tobias A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hilger, Andre A1 - Mahnke, Ingo A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Mahnke, Heinz.Eberhard T1 - Virtual Access to Hidden Texts – Study of Ancient Papyri T2 - Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany N2 - When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text. Y1 - 2016 ER - TY - CHAP A1 - Baum, Daniel T1 - Multiple semi-flexible 3D superposition of drug-sized molecules T2 - Computational Life Sciences: First International Symposium, CompLife 2005 Y1 - 2005 U6 - https://doi.org/10.1007/11560500_18 VL - 3695 SP - 198 EP - 207 PB - Springer CY - Konstanz, Germany ER - TY - GEN A1 - Baum, Daniel T1 - An Evaluation of Color Maps for Visual Data Exploration T3 - ZIB-Report - 19-42 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74259 SN - 1438-0064 ER - TY - CHAP A1 - Baum, Daniel ED - Bock von Wülfingen, Bettina T1 - An Evaluation of Color Maps for Visual Data Exploration T2 - Science in Color: Visualizing Achromatic Knowledge Y1 - 2019 SP - 147 EP - 161 PB - De Gruyter CY - Berlin ER - TY - THES A1 - Baum, Daniel T1 - A Point-Based Algorithm for Multiple 3D Surface Alignment of Drug-Sized Molecules N2 - One crucial step in virtual drug design is the identification of new lead structures with respect to a pharmacological target molecule. The search for new lead structures is often done with the help of a pharmacophore, which carries the essential structural as well as physico-chemical properties that a molecule needs to have in order to bind to the target molecule. In the absence of the target molecule, such a pharmacophore can be established by comparison of a set of active compounds. In order to identify their common features,a multiple alignment of all or most of the active compounds is necessary. Moreover, since the “outer shape” of the molecules plays a major role in the interaction between drug and target, an alignment algorithm aiming at the identification of common binding properties needs to consider the molecule’s “outer shape”, which can be approximated by the solvent excluded surface. In this thesis, we present a new approach to molecular surface alignment based on a discrete representation of shape as well as physico-chemical properties by points distributed on the solvent excluded surface. We propose a new method to distribute points regularly on a surface w.r.t. a smoothly varying point density given on that surface. Since the point distribution algorithm is not restricted to molecular surfaces, it might also be of interest for other applications. For the computation of pairwise surface alignments, we extend an existing point matching scheme to surface points, and we develop an efficient data structure speeding up the computation by a factor of three. Moreover, we present an approach to compute multiple alignments from pairwise alignments, which is able to handle a large number of surface points. All algorithms are evaluated on two sets of molecules: eight thermolysin inhibitors and seven HIV-1 protease inhibitors. Finally, we compare the results obtained from surface alignment with the results obtained by applying an atom alignment approach. N2 - Die Identifizierung neuer Leitstrukturen (lead structures) zur Entwicklung optimierter Wirkstoffe ist ein äußerst wichtiger Schritt in der virtuellen Wirkstoffentwicklung (virtual drug design). Die Suche nach neuen Leitstrukturen wird oft mit Hilfe eines Pharmakophor-Modells durchgeführt, welches die wichtigsten strukturellen wie auch physiko-chemischen Eigenschaften eines bindenden Moleküls in sich vereint. Ist das Zielmolekül (target) nicht bekannt, kann das Pharmakophor-Modell mit Hilfe des Vergleiches aktiver Moleküle erstellt werden. Hier ist insbesondere die gleichzeitige Überlagerung (multiple alignment) aller oder nahezu aller Moleküle notwendig. Da bei der Interaktion zweier Moleküle die "äußere Form" der Moleküle eine besondere Rolle spielt, sollte diese von jedem Überlagerungsalgorithmus, der sich mit der Identifizierung von Bindungseigenschaften befasst, berücksichtigt werden. Dabei kann die "äußere Form" durch eine bestimmte Art von molekularer Oberfläche approximiert werden, die man als solvent excluded surface bezeichnet. In dieser Arbeit stellen wir einen neuen Ansatz zur Überlagerung molekularer Oberflächen dar, der auf einer diskreten Repräsentation sowohl der Form als auch der molekularen Eigenschaften mittels Punkten beruht. Um die Punkte auf der molekularen Oberfläche möglichst regulär entsprechend einer gegebenen Punktdichte zu verteilen, entwickeln wir eine neue Methode. Diese Methode ist nicht auf Moleküloberflächen beschränkt und könnte daher auch für andere Anwendungen von Interesse sein. Basierend auf einem bekannten Point-Matching Verfahren entwickeln wir einen Point-Matching Algorithmus für Oberflächenpunkte. Dazu erarbeiten wir u.a. eine effiziente Datenstruktur, die den Algorithmus um einen Faktor von drei beschleunigt. Darüberhinaus stellen wir einen Ansatz vor, der Mehrfachüberlagerungen (multiple alignments) aus paarweisen Überlagerungen berechnet. Die Herausforderung besteht hierbei vor allem in der großen Anzahl von Punkten, die berücksichtigt werden muss. Die vorgestellten Algorithmen werden an zwei Gruppen von Molekülen evaluiert, wobei die erste Gruppe aus acht Thermolysin Inhibitoren besteht, die zweite aus sieben HIV-1 Protease Inhibitoren. Darüberhinaus vergleichen wir die Ergebnisse der Oberflächenüberlagerung mit denen einer Atommittelpunktüberlagerung. KW - molecular surface alignment KW - point-based approximation KW - multiple alignment Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000002759-2 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002759 ER - TY - GEN A1 - Baum, Daniel T1 - Finding All Maximal Cliques of a Family of Induced Subgraphs N2 - Many real world problems can be mapped onto graphs and solved with well-established efficient algorithms studied in graph theory. One such problem is to find large sets of points satisfying some mutual relationship. This problem can be transformed to the problem of finding all cliques of an undirected graph by mapping each point onto a vertex of the graph and connecting any two vertices by an edge whose corresponding points satisfy our desired relationship. Clique detection has been widely studied and there exist efficient algorithms. In this paper we study a related problem, where all points have a set of binary attributes, each of which is either 0 or 1. This is only a small limitation, since all discrete properties can be mapped onto binary attributes. In our case, we want to find large sets of points not only satisfying some mutual relationship; but, in addition, all points of a set also need to have at least one common attribute with value 1. The problem we described can be mapped onto a set of induced subgraphs, where each subgraph represents a single attribute. For attribute $i$, its associated subgraph contains those vertices corresponding to the points with attribute $i$ set to 1. We introduce the notion of a maximal clique of a family, $\mathcal{G}$, of induced subgraphs of an undirected graph, and show that determining all maximal cliques of $\mathcal{G}$ solves our problem. Furthermore, we present an efficient algorithm to compute all maximal cliques of $\mathcal{G}$. The algorithm we propose is an extension of the widely used Bron-Kerbosch algorithm. T3 - ZIB-Report - 03-53 KW - Bron-Kerbosch algorithm KW - maximal cliques KW - vertex properties KW - family of induced subgraphs KW - backtracking algorithm KW - branch and bound technique KW - re Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7758 ER - TY - GEN A1 - Baum, Daniel T1 - Multiple Semi-flexible 3D Superposition of Drug-sized Molecules N2 - In this paper we describe a new algorithm for multiple semi-flexible superpositioning of drug-sized molecules. The algorithm identifies structural similarities of two or more molecules. When comparing a set of molecules on the basis of their three-dimensional structures, one is faced with two main problems. (1) Molecular structures are not fixed but flexible, i.e., a molecule adopts different forms. To address this problem, we consider a set of conformers per molecule. As conformers we use representatives of conformational ensembles, generated by the program ZIBMol. (2) The degree of similarity may vary considerably among the molecules. This problem is addressed by searching for similar substructures present in arbitrary subsets of the given set of molecules. The algorithm requires to preselect a reference molecule. All molecules are compared to this reference molecule. For this pairwise comparison we use a two-step approach. Clique detection on the correspondence graph of the molecular structures is used to generate start transformations, which are then iteratively improved to compute large common substructures. The results of the pairwise comparisons are efficiently merged using binary matching trees. All common substructures that were found, whether they are common to all or only a few molecules, are ranked according to different criteria, such as number of molecules containing the substructure, size of substructure, and geometric fit. For evaluating the geometric fit, we extend a known scoring function by introducing weights which allow to favor potential pharmacophore points. Despite considering the full atomic information for identifying multiple structural similarities, our algorithm is quite fast. Thus it is well suited as an interactive tool for the exploration of structural similarities of drug-sized molecules. T3 - ZIB-Report - 04-52 KW - pharmaceutical drug design KW - multiple superposition KW - semi-flexible alignment KW - clique detection KW - iterative closest point KW - matching tree Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8278 ER - TY - GEN A1 - Baum, Daniel A1 - Giliard, Nicole A1 - Hasler, Tim A1 - Peters-Kottig, Wolfgang T1 - Leitlinien zum Umgang mit Forschungsdaten am Zuse-Institut Berlin N2 - Die nachhaltige Sicherung und Bereitstellung von Forschungsdaten dienen nicht nur der Reproduzierbarkeit früherer Ergebnisse, sondern in hohem Maße auch der Erzielung künftiger Ergebnisse mit dem Ziel, die Qualität, Produktivität und Wettbewerbsfähigkeit der Wissenschaft zu fördern. Die folgenden Grundsätze gelten als Leitlinien zur Handhabung von Forschungsdaten im ZIB. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73781 CY - Berlin ER - TY - CHAP A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - A Point-matching based algorithm for 3D surface alignment of drug-sized molecules T2 - Computational Life Sciences II, Second International Symposium, CompLife 2006, Cambridge (UK), Sept. 2006 Y1 - 2006 U6 - https://doi.org/10.1007/11875741_18 VL - 4216 SP - 183 EP - 193 PB - Springer ER - TY - JOUR A1 - Baum, Daniel A1 - Herter, Felix A1 - Larsen, John Møller A1 - Lichtenberger, Achim A1 - Raja, Rubina T1 - Revisiting the Jerash Silver Scroll: a new visual data analysis approach JF - Digital Applications in Archaeology and Cultural Heritage N2 - This article revisits a complexly folded silver scroll excavated in Jerash, Jordan in 2014 that was digitally examined in 2015. In this article we apply, examine and discuss a new virtual unfolding technique that results in a clearer image of the scroll’s 17 lines of writing. We also compare it to the earlier unfolding and discuss progress in general analytical tools. We publish the original and the new images as well as the unfolded volume data open access in order to make these available to researchers interested in optimising unfolding processes of various complexly folded materials. Y1 - 2021 U6 - https://doi.org/10.1016/j.daach.2021.e00186 VL - 21 SP - e00186 ER - TY - GEN A1 - Baum, Daniel A1 - Herter, Felix A1 - Lepper, Verena T1 - Jerash Silver Scroll: Virtually Unfolded Volume T2 - figshare N2 - A new virtual unfolding technique was applied to a silver scroll excavated in Jerash, Jordan, in 2014. As result of the unfolding, 17 lines of writing are clearly visible in the unfolded volumetric data that is published here. Y1 - 2020 U6 - https://doi.org/10.6084/m9.figshare.12145236 ER - TY - JOUR A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri JF - Applied Physics A N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. Y1 - 2017 U6 - https://doi.org/10.1007/s00339-017-0808-6 VL - 123 IS - 3 SP - 171 ER - TY - GEN A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. T3 - ZIB-Report - 17-02 KW - unfolding, papyri, computed tomography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61826 SN - 1438-0064 ER - TY - CHAP A1 - Baum, Daniel A1 - Mahlow, Kristin A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Müller, Johannes A1 - Hege, Hans-Christian T1 - The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis) T2 - Abstract in DigitalSpecimen 2014 N2 - Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term ‘surface-based morphometrics’. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called ‘surface paths’, might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique. Y1 - 2014 ER - TY - GEN A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion N2 - Many natural objects contain pores and cavities that are filled with the same material that also surrounds the object. When such objects are imaged using, for example, computed tomography, the pores and cavities cannot be distinguished from the surrounding material by considering gray values and texture properties of the image. In this case, morphological operations are often used to fill the inner region. This is efficient, if the pore and cavity structures are small compared to the overall size of the object and if the object’s shape is mainly convex. If this is not the case, the segmentation might be very difficult and may result in a lot of noise. We propose the usage of ambient occlusion for the segmentation of pores and cavities. One nice property of ambient occlusion is that it generates smooth scalar fields. Due to this smoothness property, a segmentation based on those fields will result in smooth boundaries at the pore and cavity openings. This is often desired, particularly when dealing with natural objects. T3 - ZIB-Report - 16-17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59151 SN - 1438-0064 ER - TY - CHAP A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion T2 - EuroVis 2016 - Short Papers Y1 - 2016 U6 - https://doi.org/10.2312/eurovisshort.20161171 PB - The Eurographics Association ER -