TY - GEN A1 - Schütte, Christof A1 - Fischer, Alexander A1 - Huisinga, Wilhelm A1 - Deuflhard, Peter T1 - A Direct Approach to Conformational Dynamics based on Hybrid Monte Carlo N2 - Recently, a novel concept for the computation of essential features of the dynamics of Hamiltonian systems (such as molecular dynamics) has been proposed. The realization of this concept had been based on subdivision techniques applied to the Frobenius--Perron operator for the dynamical system. The present paper suggests an alternative but related concept that merges the conceptual advantages of the dynamical systems approach with the appropriate statistical physics framework. This approach allows to define the phrase ``conformation'' in terms of the dynamical behavior of the molecular system and to characterize the dynamical stability of conformations. In a first step, the frequency of conformational changes is characterized in statistical terms leading to the definition of some Markov operator $T$ that describes the corresponding transition probabilities within the canonical ensemble. In a second step, a discretization of $T$ via specific hybrid Monte Carlo techniques is shown to lead to a stochastic matrix $P$. With these theoretical preparations, an identification algorithm for conformations is applicable. It is demonstrated that the discretization of $T$ can be restricted to few essential degrees of freedom so that the combinatorial explosion of discretization boxes is prevented and biomolecular systems can be attacked. Numerical results for the n-pentane molecule and the triribonucleotide adenylyl\emph{(3'-5')}cytidylyl\emph{(3'-5')}cytidin are given and interpreted. T3 - ZIB-Report - SC-98-45 KW - conformation KW - conformational dynamics KW - hybrid Monte Carlo KW - reweighting KW - essential degrees of freedom KW - transition probabilities KW - Markov operator Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3889 ER - TY - GEN A1 - Schütte, Christof A1 - Nettesheim, Peter T1 - Non-Adiabatic Effects in Quantum-Classical Molecular Dynamics N2 - In molecular dynamics applications there is a growing interest in mixed quantum-classical models. The article is concerned with the so-called QCMD model. This model describes most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of a wavefunction. We review the conditions under which the QCMD model is known to approximate the full quantum dynamical evolution of the system. In most quantum-classical simulations the {\em Born-Oppenheimer model} (BO) is used. In this model, the wavefunction is adiabatically coupled to the classical motion which leads to serious approximation deficiencies with respect to non-adiabatic effects in the fully quantum dynamical description of the system. In contrast to the BO model, the QCMD model does include non-adiabatic processes, e.g., transitions between the energy levels of the quantum system. It is demonstrated that, in mildly non-adiabatic scenarios, so-called {\em surface hopping} extensions of QCMD simulations yield good approximations of the non-adiabatic effects in full quantum dynamics. The algorithmic strategy of such extensions of QCMD is explained and the crucial steps of its realization are discussed with special emphasis on the numerical problems caused by highly oscillatory phase effects. T3 - ZIB-Report - SC-98-38 KW - quantum-classical molecular dynamics KW - non-adiabatic processes KW - Schrödinger equation KW - highly oscillatory phase KW - adiabatic limit KW - quantum adiabati Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3817 ER - TY - GEN A1 - Huisinga, Wilhelm A1 - Best, Christoph A1 - Cordes, Frank A1 - Roitzsch, Rainer A1 - Schütte, Christof T1 - From Simulation Data to Conformational Ensembles: Structure and Dynamics based Methods N2 - Statistical methods for analyzing large data sets of molecular configurations within the chemical concept of molecular conformations are described. The strategies are based on dependencies between configurations of a molecular ensemble; the article concentrates on dependencies induces by a) correlations between the molecular degrees of freedom, b) geometrical similarities of configurations, and c) dynamical relations between subsets of configurations. The statistical technique realizing aspect a) is based on an approach suggested by {\sc Amadei et al.} (Proteins, 17 (1993)). It allows to identify essential degrees of freedom of a molecular system and is extended in order to determine single configurations as representatives for the crucial features related to these essential degrees of freedom. Aspects b) and c) are based on statistical cluster methods. They lead to a decomposition of the available simulation data into {\em conformational ensembles} or {\em subsets} with the property that all configurations in one of these subsets share a common chemical property. In contrast to the restriction to single representative conformations, conformational ensembles include information about, e.g., structural flexibility or dynamical connectivity. The conceptual similarities and differences of the three approaches are discussed in detail and are illustrated by application to simulation data originating from a hybrid Monte Carlo sampling of a triribonucleotide. T3 - ZIB-Report - SC-98-36 KW - conformational ensemble KW - cluster method KW - structural and dynamical similarity KW - representative KW - conformation KW - essential degrees of freedom KW - transi Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3797 ER - TY - GEN A1 - Deuflhard, Peter A1 - Huisinga, Wilhelm A1 - Fischer, Alexander A1 - Schütte, Christof T1 - Identification of Almost Invariant Aggregates in Reversible Nearly Uncoupled Markov Chains N2 - The topic of the present paper bas been motivated by a recent computational approach to identify chemical conformations and conformational changes within molecular systems. After proper discretization, the conformations show up as almost invariant aggregates in reversible nearly uncoupled Markov chains. Most of the former work on this subject treated the direct problem: given the aggregates, analyze the loose coupling in connection with the computation of the stationary distribution (aggregation/disaggregation techniques). In contrast to that the present paper focuses on the inverse problem: given the system as a whole, identify the almost invariant aggregates together with the associated transition probabilites. A rather simple and robust algorithm is suggested and illustrated by its application to the n-pentane molecule. T3 - ZIB-Report - SC-98-03 KW - essential molecular dynamics KW - nearly reducible KW - nearly completely decomposable KW - nearly uncoupled Markov chain KW - almost invariant aggregates KW - trans Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3469 ER - TY - GEN A1 - Schütte, Christof A1 - Fischer, Alexander A1 - Huisinga, Wilhelm A1 - Deuflhard, Peter T1 - A Hybrid Monte Carlo Method for Essential Molecular Dynamics N2 - Recently, a novel concept for the computation of essential features of Hamiltonian systems (such as those arising in molecular dynamics) has been proposed. The realization of that concept was based on subdivision techniques applied to the Frobenius--Perron operator for the dynamical system. The present paper suggests an alternative but related concept based on statistical mechanics, which allows to attack realistic molecular systems. In a first step, the frequency of conformational changes is characterized in statistical terms leading to the definition of some Markov operator $T$ that describes the corresponding transition probabilities within the canonical ensemble. In a second step, a discretization of $T$ via hybrid Monte Carlo techniques (based on short term subtrajectories only) is shown to lead to a stochastic matrix $P$. With these theoretical preparations, an identification algorithm for conformations is applicable (to be presented elsewhere). Numerical results for the n-pentane molecule are given and interpreted. T3 - ZIB-Report - SC-98-04 Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3474 ER - TY - GEN A1 - Fischer, Alexander A1 - Cordes, Frank A1 - Schütte, Christof T1 - Hybrid Monte Carlo with Adaptive Temperature in a Mixed-Canonical Ensemble: Efficient Conformational Analysis of RNA N2 - A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature, whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. \\The algorithm was tested by comparing analytical and numerical results for the small n-butane molecule before simulations were performed for a triribonucleotide. Sampling the complex multi-minima energy landscape of these small RNA segments, we observed enforced crossing of energy barriers. T3 - ZIB-Report - SC-97-67 Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3364 ER - TY - GEN A1 - Nettesheim, Peter A1 - Schütte, Christof T1 - Numerical Integrators for Quantum-Classical Molecular Dynamics N2 - It was revealed that the QCMD model is of canonical Hamiltonian form with symplectic structure, which implies the conservation of energy. An efficient and reliable integrator for transfering these properties to the discrete solution is the symplectic and explicit {\sc Pickaback} algorithm. The only drawback of this kind of integrator is the small stepsize in time induced by the splitting techniques used to discretize the quantum evolution operator. Recent investigations concerning Krylov iteration techniques result in alternative approaches which overcome this difficulty for a wide range of problems. By using iterative methods in the evaluation of the quantum time propagator, these techniques allow for the stepsize to adapt to the coupling between the classical and the quantum mechanical subsystem. This yields a drastic reduction of the numerical effort. The pros and cons of both approaches as well as the suitable applications are discussed in the last part. T3 - ZIB-Report - SC-97-42 Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3111 ER - TY - GEN A1 - Schütte, Christof A1 - Bornemann, Folkmar A. T1 - Approximation Properties and Limits of the Quantum-Classical Molecular Dynamics Model N2 - In molecular dynamics applications there is a growing interest in including quantum effects for simulations of larger molecules. This paper is concerned with {\em mixed quantum-classical} models which are currently discussed: the so-called QCMD model with variants and the time-dependent Born-Oppenheimer approximation. All these models are known to approximate the full quantum dynamical evolution---under different assumptions, however. We review the meaning of these assumptions and the scope of the approximation. In particular, we characterize those typical problematic situations where a mixed model might largely deviate from the full quantum evolution. One such situation of specific interest, a non-adiabatic excitation at certain energy level crossings, can promisingly be dealt with by a modification of the QCMD model that we suggest. T3 - ZIB-Report - SC-97-41 Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3102 ER - TY - GEN A1 - Bornemann, Folkmar A. A1 - Schütte, Christof T1 - On the Singular Limit of the Quantum-Classical Molecular Dynamics Model N2 - \noindent In molecular dynamics applications there is a growing interest in so-called {\em mixed quantum-classical} models. These models describe most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of quantum mechanics. A particularly extensively used model, the QCMD model, consists of a {\em singularly perturbed}\/ Schrödinger equation nonlinearly coupled to a classical Newtonian equation of motion. This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces. The main result states that this limit is given by the time-dependent Born-Oppenheimer model of quantum theory---provided the Hamiltonian under consideration has a smooth spectral decomposition. This result is strongly related to the {\em quantum adiabatic theorem}. The proof uses the method of {\em weak convergence} by directly discussing the density matrix instead of the wave functions. This technique avoids the discussion of highly oscillatory phases. On the other hand, the limit of the QCMD model is of a different nature if the spectral decomposition of the Hamiltonian happens not to be smooth. We will present a generic example for which the limit set is not a unique trajectory of a limit dynamical system but rather a {\em funnel} consisting of infinitely many trajectories. T3 - ZIB-Report - SC-97-07 Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-2761 ER - TY - GEN A1 - Nettesheim, Peter A1 - Huisinga, Wilhelm A1 - Schütte, Christof T1 - Chebyshev-Approximation for Wavepacket-Dynamics: better than expected N2 - The aim of this work is to study the accuracy and stability of the Chebyshev--approximation method as a time--discretization for wavepacket dynamics. For this frequently used discretization we introduce estimates of the approximation and round--off error. These estimates mathematically confirm the stability of the Chebyshev--approximation with respect to round--off errors, especially for very large stepsizes. But the results also disclose threads to the stability due to large spatial dimensions. All theoretical statements are illustrated by numerical simulations of an analytically solvable example, the harmonic quantum oszillator. T3 - ZIB-Report - SC-96-47 Y1 - 1996 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-2575 ER -