TY - JOUR A1 - Wang, Han A1 - Schütte, Christof A1 - Zhang, P. T1 - Error Estimate of Short-Range Force Calculation in the Inhomogeneous Molecular Systems JF - Phys. Rev. E Y1 - 2012 UR - http://publications.imp.fu-berlin.de/1125/ U6 - https://doi.org/10.1103/PhysRevE.86.026704 VL - 86 IS - 02 SP - 026704 ER - TY - JOUR A1 - Wang, Han A1 - Zhang, P. A1 - Schütte, Christof T1 - On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems JF - J. Chem. Theo. Comp. Y1 - 2012 UR - http://publications.imp.fu-berlin.de/1181/ U6 - https://doi.org/10.1021/ct300343y VL - 8 IS - 9 SP - 3243 EP - 3256 ER - TY - JOUR A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-Free Markov State Model Building JF - Journal of Chemical Physics Y1 - 2017 U6 - https://doi.org/10.1063/1.4978501 VL - 146 IS - 12 ER - TY - GEN A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-free Markov State Building N2 - Molecular dynamics (MD) simulations face challenging problems since the timescales of interest often are much longer than what is possible to simulate and even if sufficiently long simulation are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant timescales accessible via coarse grained representations that also allows for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM. T3 - ZIB-Report - 17-10 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62167 SN - 1438-0064 ER - TY - JOUR A1 - Wehlitz, Nathalie A1 - Sadeghi, Mohsen A1 - Montefusco, Alberto A1 - Schütte, Christof A1 - Pavliotis, Grigorios A. A1 - Winkelmann, Stefanie T1 - Approximating particle-based clustering dynamics by stochastic PDEs N2 - This work proposes stochastic partial differential equations (SPDEs) as a practical tool to replicate clustering effects of more detailed particle-based dynamics. Inspired by membrane mediated receptor dynamics on cell surfaces, we formulate a stochastic particle-based model for diffusion and pairwise interaction of particles, leading to intriguing clustering phenomena. Employing numerical simulation and cluster detection methods, we explore the approximation of the particle-based clustering dynamics through mean-field approaches. We find that SPDEs successfully reproduce spatiotemporal clustering dynamics, not only in the initial cluster formation period, but also on longer time scales where the successive merging of clusters cannot be tracked by deterministic mean-field models. The computational efficiency of the SPDE approach allows us to generate extensive statistical data for parameter estimation in a simpler model that uses a Markov jump process to capture the temporal evolution of the cluster number. Y1 - 2024 ER - TY - JOUR A1 - Weiss, Maximilian A1 - Paulus, Florian A1 - Steinhilber, D. A1 - Nikitin, Anatoly A1 - Haag, Rainer A1 - Schütte, Christof T1 - Estimating Kinetic Parameters for the Spontaneous Polymerization of Glycidol at Elevated Temperatures JF - MACROMOLECULAR THEORY and SIMULATIONS Y1 - 2012 UR - http://publications.imp.fu-berlin.de/1142/ U6 - https://doi.org/10.1002/mats.201200003 VL - 21 IS - 7 SP - 470 EP - 481 ER - TY - GEN A1 - Willenbockel, Christian Tobias A1 - Schütte, Christof T1 - Variational Bayesian Inference and Model Selection for the Stochastic Block Model with Irrelevant Vertices N2 - Real World networks often exhibit a significant number of vertices which are sparsely and irregularly connected to other vertices in the network. For clustering theses networks with a model based algorithm, we propose the Stochastic Block Model with Irrelevant Vertices (SBMIV) for weighted net- works. We propose an original Variational Bayesian Expectation Maximiza- tion inference algorithm for the SBMIV which is an advanced version of our Blockloading algorithm for the Stochastic Block Model. We introduce a model selection criterion for the number of clusters of the SBMIV which is based on the lower variational bound of the model likelihood. We propose a fully Bayesian inference process, based on plausible informative priors, which is independent of other algorithms for preprocessing start values for the cluster assignment of vertices. Our inference methods allow for a multi level identification of irrelevant vertices which are hard to cluster reliably ac- cording to the SBM. We demonstrate that our methods improve on the normal Stochastic Block model by applying it to to Earthquake Networks which are an example of networks with a large number of sparsely and irregularly con- nected vertices. T3 - ZIB-Report - 16-01 KW - Clustering KW - Variational Bayes EM KW - Model Selection, KW - Stochastic Block Model KW - Networks KW - unsupervised classification KW - Noise Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57003 SN - 1438-0064 ER - TY - GEN A1 - Willenbockel, Christian Tobias A1 - Schütte, Christof T1 - A Variational Bayesian Algorithm for Clustering of Large and Complex Networks N2 - We propose the Blockloading algorithm for the clustering of large and complex graphs with tens of thousands of vertices according to a Stochastic Block Model (SBM). Blockloading is based on generalized Variational Bayesian EM (VBEM) schemes and works for weighted and unweighted graphs. Existing Variational (Bayesian) EM methods have to consider each possible number of clusters sepa- rately to determine the optimal number of clusters and are prone to converge to local optima making multiple restarts necessary. These factors impose a severe restriction on the size and complexity of graphs these methods can handle. In con- trast, the Blockloading algorithm restricts restarts to subnetworks in a way that provides error correction of an existing cluster assignment. The number of clusters need not be specified in advance because Blockloading will return it as a result. We show that Blockloading outperforms all other variational methods regarding reliability of the results and computational efficiency. T3 - ZIB-Report - 15-25 KW - Clustering KW - Variational Bayes EM KW - Model Selection, KW - Stochastic Block Model KW - Networks KW - unsupervised classification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54588 SN - 1438-0064 ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems JF - The Journal of Chemical Physics N2 - Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations. Y1 - 2017 U6 - https://doi.org/10.1063/1.4986560 VL - 147 IS - 11 SP - 114115-1 EP - 114115-18 ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - The Spatiotemporal Master Equation: Approximation of Reaction-Diffusion Dynamics via Markov State Modeling JF - Journal of Chemical Physics N2 - Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest.We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented. Y1 - 2016 U6 - https://doi.org/10.1063/1.4971163 VL - 145 IS - 21 ER -