TY - CHAP A1 - Yokoyama, Ryohei A1 - Kamada, Hiroki A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - A Hierarchical Optimization Approach to Robust Design of Energy Supply Systems Based on a Mixed-Integer Linear Model T2 - Conference N2 - In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchi- cal mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy sup- ply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret cri- terion, and considering relationships among integer design variables, uncertain energy demands, and inte- ger and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Since these different types of optimization problems are difficult to solve even using commercial MILP solvers, they are solved by applying a hierarchi- cal MILP method developed for ordinary optimal design problems with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified. Y1 - 2020 SP - 601 EP - 613 ER - TY - GEN A1 - Most, Dieter A1 - Giannelos, Spyros A1 - Yueksel-Erguen, Inci A1 - Beulertz, Daniel A1 - Haus, Utz-Uwe A1 - Charousset-Brignol, Sandrine A1 - Frangioni, Antonio T1 - A Novel Modular Optimization Framework for Modelling Investment and Operation of Energy Systems at European Level N2 - Project plan4res (www.plan4res.eu) involves the development of a modular framework for the modeling and analysis of energy system strategies at the European level. It will include models describing the investment and operation decisions for a wide variety of technologies related to electricity and non-electricity energy sectors across generation, consumption, transmission and distribution. The modularity of the framework allows for detailed modelling of major areas of energy systems that can help stakeholders from different backgrounds to focus on specific topics related to the energy landscape in Europe and to receive relevant outputs and insights tailored to their needs. The current paper presents a qualitative description of key concepts and methods of the novel modular optimization framework and provides insights into the corresponding energy landscape. T3 - ZIB-Report - 20-08 KW - energy systems analysis and optimization KW - simulation and planning under uncertainty KW - renewables integration KW - sector coupling KW - climate change impact Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78079 SN - 1438-0064 ER - TY - JOUR A1 - Koch, Thorsten A1 - Chen, Ying A1 - Lim, Kian Guan A1 - Xu, Xiaofei A1 - Zakiyeva, Nazgul T1 - A review study of functional autoregressive models with application to energy forecasting JF - WIREs Computational Statistics Y1 - 2020 U6 - https://doi.org/10.1002/wics.1525 N1 - https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7693&context=lkcsb_research ER - TY - JOUR A1 - Rössig, Ansgar A1 - Petkovic, Milena T1 - Advances in Verification of ReLU Neural Networks JF - Journal of Global Optimization N2 - We consider the problem of verifying linear properties of neural networks. Despite their success in many classification and prediction tasks, neural networks may return unexpected results for certain inputs. This is highly problematic with respect to the application of neural networks for safety-critical tasks, e.g. in autonomous driving. We provide an overview of algorithmic approaches that aim to provide formal guarantees on the behavior of neural networks. Moreover, we present new theoretical results with respect to the approximation of ReLU neural networks. On the other hand, we implement a solver for verification of ReLU neural networks which combines mixed integer programming (MIP) with specialized branching and approximation techniques. To evaluate its performance, we conduct an extensive computational study. For that we use test instances based on the ACAS Xu System and the MNIST handwritten digit data set. Our solver is publicly available and able to solve the verification problem for instances which do not have independent bounds for each input neuron. Y1 - 2020 U6 - https://doi.org/10.1007/s10898-020-00949-1 PB - Springer ER - TY - CHAP A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - An exact high performance solver for Steiner tree problems in graphs and related problems T2 - Modeling, Simulation and Optimization of Complex Processes HPSC 2018 Y1 - 2020 PB - Springer ER - TY - JOUR A1 - Gotzes, Uwe A1 - Hoppmann-Baum, Kai T1 - Bounding the final rank during a round robin tournament with integer programming JF - Operational Research N2 - This article is mainly motivated by the urge to answer two kinds of questions regarding the Bundesliga, which is Germany’s primary football (soccer) division having the highest average stadium attendance worldwide: “At any point in the season, what is the lowest final rank a certain team can achieve?” and “At any point in the season, what is the highest final rank a certain team can achieve?”. Although we focus on the Bundesliga in particular, the integer programming formulations we introduce to answer these questions can easily be adapted to a variety of other league systems and tournaments. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1007/s12351-020-00546-w VL - 1866-1505 ER - TY - JOUR A1 - Koch, Thorsten A1 - Schmidt, Martin A1 - Hiller, Benjamin A1 - Pfetsch, Marc A1 - Geißler, Björn A1 - Henrion, René A1 - Joormann, Imke A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Schewe, Lars A1 - Schultz, Rüdiger T1 - Capacity Evaluation for Large-Scale Gas Networks JF - German Success Stories in Industrial Mathematics Y1 - 2020 SN - 978-3-030-81454-0 U6 - https://doi.org/10.1007/978-3-030-81455-7 VL - 35 SP - 23 EP - 28 ER - TY - JOUR A1 - Chen, Ying A1 - Xu, Xiuqin A1 - Koch, Thorsten T1 - Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model JF - Applied Energy N2 - As the natural gas market is moving towards short-term planning, accurate and robust short-term forecasts of the demand and supply of natural gas is of fundamental importance for a stable energy supply, a natural gas control schedule, and transport operation on a daily basis. We propose a hybrid forecast model, Functional AutoRegressive and Convolutional Neural Network model, based on state-of-the-art statistical modeling and artificial neural networks. We conduct short-term forecasting of the hourly natural gas flows of 92 distribution nodes in the German high-pressure gas pipeline network, showing that the proposed model provides nice and stable accuracy for different types of nodes. It outperforms all the alternative models, with an improved relative accuracy up to twofold for plant nodes and up to fourfold for municipal nodes. For the border nodes with rather flat gas flows, it has an accuracy that is comparable to the best performing alternative model. KW - Natural gas flow forecasting KW - Neural network KW - Hybrid model KW - Functional autoregressive Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1016/j.apenergy.2019.114486 VL - 262 IS - 114486 ER - TY - CHAP A1 - Yokoyama, Ryohei A1 - Takeuchi, Kotaro A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Effect of Model Reduction by Time Aggregation in Multiobjective Optimal Design of Energy Supply Systems by a Hierarchical MILP Method T2 - Conference N2 - The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems effi- ciently. As one of the strategies to enhance the computation efficiency furthermore, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. In applying the model reduc- tion, the methods of clustering periods by the order of time series, based on an operational strategy, and by the k-medoids method are applied. As a case study, the multiobjective optimal design of a gas turbine cogeneration system with a practical configuration is investigated by adopting the annual total cost and pri- mary energy consumption as the objective functions to be minimized simultaneously, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function. It also turns out that the model reduction only by the k- medoids method is effective very limitedly when importance is given to minimizing the second objective function. Y1 - 2020 SP - 627 EP - 639 ER - TY - CHAP A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method T2 - Operations Research Proceedings 2019 N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-48439-2_13 SP - 105 EP - 111 PB - Springer International Publishing ET - 1 ER -