TY - GEN A1 - Zymolka, Adrian A1 - Koster, Arie M.C.A. A1 - Wessäly, Roland T1 - Transparent optical network design with sparse wavelength conversion N2 - We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse wavelength conversion for efficient use of the capacities. In this paper, we investigate this extensive optical network design task. Using a flexible device-based model, we present an integer programming formulation that supports greenfield planning as well as expansion planning on top of an existing network. As solution method, we propose a suitable decomposition approach that separates the wavelength assignment from the dimensioning and routing. Our method in particular provides a lower bound on the total cost which allows to rate the solution quality. Computational experiments on realistic networks approve the solution approach to be appropriate. T3 - ZIB-Report - 02-34 KW - optical network design KW - wavelength conversion KW - integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7017 ER - TY - THES A1 - Zymolka, Adrian T1 - Design of Survivable Optical Networks by Mathematical Optimization N2 - Abstract The cost-efficient design of survivable optical telecommunication networks is the topic of this thesis. In cooperation with network operators, we have developed suitable concepts and mathematical optimization methods to solve this comprehensive planning task in practice. Optical technology is more and more employed in modern telecommunication networks. Digital information is thereby transmitted as short light pulses through glass fibers. Moreover, the optical medium allows for simultaneous transmissions on a single fiber by use of different wavelengths. Recent optical switches enable a direct forwarding of optical channels in the network nodes without the previously required signal retransformation to electronics. Their integration creates ongoing optical connections,which are called lightpaths. We study the problem of finding cost-efficient configurations of optical networks which meet specified communication requirements. A configuration comprises the determination of all lightpaths to establish as well as the detailed allocation of all required devices and systems. We use a flexible modeling framework for a realistic representation of the networks and their composition. For different network architectures, we formulate integer linear programs which model the design task in detail. Moreover, network survivability is an important issue due to the immense bandwidths offered by optical technology. Operators therefore request for designs which perpetuate protected connections and guarantee for a defined minimum throughput in case of malfunctions. In order to achieve an effective realization of scalable protection, we present a novel survivability concept tailored to optical networks and integrate several variants into the models. Our solution approach is based on a suitable model decomposition into two subtasks which separates two individually hard subproblems and enables this way to compute cost-efficient designs with approved quality guarantee. The first subtask consists of routing the connections with corresponding dimensioning of capacities and constitutes a common core task in the area of network planning. Sophisticated methods for such problems have already been developed and are deployed by appropriate integration. The second subtask is characteristic for optical networks and seeks for a conflict-free assignment of available wavelengths to the lightpaths using a minimum number of involved wavelength converters. For this coloring-like task, we derive particular models and study methods to estimate the number of unavoidable conversions. As constructive approach, we develop heuristics and an exact branch-and-price algorithm. Finally, we carry out an extensive computational study on realistic data, provided by our industrial partners. As twofold purpose, we demonstrate the potential of our approach for computing good solutions with quality guarantee, and we exemplify its flexibility for application to network design and analysis. KW - network design KW - optical networks KW - integer programming KW - mathematical optimization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10408 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian A1 - Kutschka, Manuel T1 - Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts N2 - Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or $\frac{1}{2}$, such cuts are known as $\{0,\frac{1}{2}\}$-cuts. It has been proven by Caprara and Fischetti (1996) that separation of $\{0,\frac{1}{2}\}$-cuts is NP-hard. In this paper, we study ways to separate $\{0,\frac{1}{2}\}$-cuts effectively in practice. We propose a range of preprocessing rules to reduce the size of the separation problem. The core of the preprocessing builds a Gaussian elimination-like procedure. To separate the most violated $\{0,\frac{1}{2}\}$-cut, we formulate the (reduced) problem as integer linear program. Some simple heuristic separation routines complete the algorithmic framework. Computational experiments on benchmark instances show that the combination of preprocessing with exact and/or heuristic separation is a very vital idea to generate strong generic cutting planes for integer linear programs and to reduce the overall computation times of state-of-the-art ILP-solvers. T3 - ZIB-Report - 07-10 KW - {0 KW - 1/2}-Chvatal-Gomory cuts KW - separation algorithms KW - integer programming Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9531 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Provably Good Solutions for Wavelength Assignment in Optical Networks N2 - In this paper, we study the minimum converter wavelength assignment problem in optical networks. To benchmark the quality of solutions obtained by heuristics, we derive an integer programming formula tion by generalizing the formulation of Mehrotra and Trick (1996) for the vertex coloring problem. To handle the exponential number of variables, we propose a column generation approach. Computational experiments show that the value of the linear relaxation states a good lower bound and can often prove optimality of the best solution generated heuristically. T3 - ZIB-Report - 04-40 KW - wavelength assignment KW - integer programming KW - column generation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8155 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Linear Programming Lower Bounds for Minimum Converter Wavelength Assignment in Optical Networks N2 - In this paper, we study the conflict-free assignment of wavelengths to lightpaths in an optical network with the opportunity to place wavelength converters. To benchmark heuristics for the problem, we develop integer programming formulations and study their properties. Moreover, we study the computational performance of the column generation algorithm for solving the linear relaxation of the most promising formulation. In many cases, a non-zero lower bound on the number of required converters is generated this way. For several instances, we in fact prove optimality since the lower bound equals the best known solution value. T3 - ZIB-Report - 04-41 KW - optical networks KW - wavelength assignment KW - integer programming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8160 ER -