TY - GEN A1 - Ray, Sourav A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Wulkow, Hanna A1 - Celik, Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design N2 - Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. T3 - ZIB-Report - 21-19 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82797 SN - 1438-0064 ER - TY - GEN A1 - Ray, Sourav A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Weber, Marcus T1 - How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs N2 - Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a $\mu$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction. T3 - ZIB-Report - 20-18 KW - Opioid, Ligand-Receptor Interaction, Binding Kinetics, Molecular Dynamics, Metadynamics, SQRA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78437 SN - 1438-0064 ER - TY - GEN A1 - Fackeldey, Konstantin A1 - Sikorski, Alexander A1 - Weber, Marcus T1 - Spectral Clustering for Non-reversible Markov Chains N2 - Spectral clustering methods are based on solving eigenvalue problems for the identification of clusters, e.g. the identification of metastable subsets of a Markov chain. Usually, real-valued eigenvectors are mandatory for this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known spectral clustering method of Markov chains. It is applicable for reversible Markov chains, because reversibility implies a real-valued spectrum. We also extend this spectral clustering method to non-reversible Markov chains and give some illustrative examples. The main idea is to replace the eigenvalue problem by a real-valued Schur decomposition. By this extension non-reversible Markov chains can be analyzed. Furthermore, the chains do not need to have a positive stationary distribution. In addition to metastabilities, dominant cycles and sinks can also be identified. This novel method is called GenPCCA (i.e. Generalized PCCA), since it includes the case of non reversible processes. We also apply the method to real world eye tracking data. T3 - ZIB-Report - 18-48 KW - spectral clustering KW - Markov chain KW - Schur decomposition KW - non-reversible Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70218 SN - 1438-0064 ER - TY - GEN A1 - Fackeldey, Konstantin A1 - Koltai, Péter A1 - Névir, Peter A1 - Rust, Henning A1 - Schild, Axel A1 - Weber, Marcus T1 - From Metastable to Coherent Sets - time-discretization schemes N2 - Given a time-dependent stochastic process with trajectories x(t) in a space $\Omega$, there may be sets such that the corresponding trajectories only very rarely cross the boundaries of these sets. We can analyze such a process in terms of metastability or coherence. Metastable sets M are defined in space $M\subset\Omega$, coherent sets $M(t)\subset\Omega$ are defined in space and time. Hence, if we extend the space by the time-variable t, coherent sets are metastable sets in $\Omega\times[0,\infty]$. This relation can be exploited, because there already exist spectral algorithms for the identification of metastable sets. In this article we show that these well-established spectral algorithms (like PCCA+) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-timediscretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application. T3 - ZIB-Report - 17-74 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66074 SN - 1438-0064 ER - TY - GEN A1 - Weber, Marcus T1 - Eigenvalues of non-reversible Markov chains – A case study N2 - Finite reversible Markov chains are characterized by a transition matrix P that has real eigenvalues and pi-orthogonal eigenvectors, where pi is the stationary distribution of P. This means, that a transition matrix with complex eigenvalues corresponds to a non-reversible Markov chain. This observation leads to the question, whether the imaginary part of that eigendecomposition corresponds to or indicates the “pattern” of the nonreversibility. This article shows that the direct relation between imaginary parts of eigendecompositions and the non-reversibility of a transition matrix is not given. It is proposed to apply the Schur decomposition of P instead of the eigendecomposition in order to characterize its nonreversibility. T3 - ZIB-Report - 17-13 KW - non-reversible KW - transition matrix KW - detailed balance Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62191 SN - 1438-0064 ER - TY - GEN A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-free Markov State Building N2 - Molecular dynamics (MD) simulations face challenging problems since the timescales of interest often are much longer than what is possible to simulate and even if sufficiently long simulation are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant timescales accessible via coarse grained representations that also allows for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM. T3 - ZIB-Report - 17-10 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62167 SN - 1438-0064 ER - TY - GEN A1 - Quer, Jannes A1 - Donati, Luca A1 - Keller, Bettina A1 - Weber, Marcus T1 - An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates N2 - In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities. T3 - ZIB-Report - 17-09 KW - Adaptive Importance Sampling KW - Molecular Dynamics KW - Metastability KW - Variance Reduction KW - Non Equilibrium Sampling KW - Metadynamics KW - Girsanov Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62075 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Beckenbach, Isabel A1 - Eifler, Leon A1 - Fackeldey, Konstantin A1 - Gleixner, Ambros A1 - Grever, Andreas A1 - Weber, Marcus T1 - Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes N2 - In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst. T3 - ZIB-Report - 16-39 KW - Non-reversible Markov Processes KW - NESS KW - Mixed-Integer Programming KW - Markov State Models Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60353 SN - 1438-0064 ER - TY - GEN A1 - Weber, Marcus A1 - Quer, Jannes T1 - Estimating exit rates in rare event dynamical systems via extrapolation N2 - In this article we present a new idea for approximating exit rates for diffusion processes living in a craggy landscape. We are especially interested in the exit rates of a process living in a metastable regions. Due to the fact that Monte Carlo simulations perform quite poor and are very computational expensive in this setting we create several similar situations with a smoothed potential. For this we introduce a new parameter $\lambda \in [0,1]$ ($\lambda = 1$ very smoothed potential, $\lambda=0$ original potential) into the potential which controls the influence the smoothing. We then sample the exit rate for different parameters $\lambda$ the exit rate from a given region. Due to the fact that $\lambda$ is connected to the exit rate we can use this dependency to approximate the real exit rate. The method can be seen as something between hyperdynamics and temperature accelerated MC. T3 - ZIB-Report - 15-54 KW - rare event sampling, smoothing, membership functions, perturbed potential Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56622 SN - 1438-0064 ER - TY - GEN A1 - Djurdjevac Conrad, Natasa A1 - Weber, Marcus A1 - Schütte, Christof T1 - Finding dominant structures of nonreversible Markov processes N2 - Finding metastable sets as dominant structures of Markov processes has been shown to be especially useful in modeling interesting slow dynamics of various real world complex processes. Furthermore, coarse graining of such processes based on their dominant structures leads to better understanding and dimension reduction of observed systems. However, in many cases, e.g. for nonreversible Markov processes, dominant structures are often not formed by metastable sets but by important cycles or mixture of both. This paper aims at understanding and identifying these different types of dominant structures for reversible as well as nonreversible ergodic Markov processes. Our algorithmic approach generalizes spectral based methods for reversible process by using Schur decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical construction of our new approach by numerical experiments. T3 - ZIB-Report - 15-40 KW - nonreversible Markov processes KW - metastable sets KW - cycle decomposition KW - Schur decomposition Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55739 SN - 1438-0064 ER -