8409
2020
2020
eng
masterthesis
0
--
--
2020-09-16
Optimal Line Planning in the Parametric City
One of the fundamental steps in the optimization of public transport is line planning. It involves determining lines and assigning frequencies of service such that costs are minimized while also maximizing passenger comfort and satisfying travel demands. We formulate the problem as a mixed integer linear program that considers all circuit-like lines in a graph and allows free passenger routing. Traveler and operator costs are included in a linear scalarization in the objective. We apply said programming problem to the Parametric City, which is a graph model introduced by Fielbaum, Jara-Díaz and Gschwender that exibly represents different cities. In his dissertation, Fielbaum solved the line planning problem for various parameter choices in the Parametric City. In a first step, we therefore review his results and make comparative computations. Unlike Fielbaum we arrive at the conclusion that the optimal line plan for this model indeed depends on the demand. Consequently, we analyze the line planning problem in-depth: We find equivalent, but easier to compute formulations and provide a lower bound by LP-relaxation, which we show to be equivalent to a multi-commodity flow problem. Further, we examine what impact symmetry has on the solutions. Supported both by computational results as well as by theoretical analysis, we reach the conclusion that symmetric line plans are optimal or near-optimal in the Parametric City. Restricting the model to symmetric line plans allows for a \kappa-factor approximation algorithm for the line planning problem in the Parametric City.
publish
Ralf Borndörfer
Berenike Masing
Niels Lindner
Thorsten Koch
Niels Lindner
Computer Applications
OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
MODAL-Gesamt
Network Optimization
Masing, Berenike
MODAL-MobilityLab
Technische Universität Berlin