6823
2017
eng
doctoralthesis
0
--
--
2016-07-05
Mathematical Optimization of Rolling Stock Rotations
We show how to optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical ptimization problem is called rolling stock rotation problem (RSRP) and the leitmotiv of the thesis is RotOR, i.e., a highly integrated optimization algorithm for the RSRP. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. In this application, RSRPs have to be solved which (A) require many different aspects to be simultaneously considered, (B) are typically of large scale, and (C) include constraints that have a difficult combinatorial structure. This thesis suggests answers to these issues via the following concepts.
(A) The main model, which RotOR uses, relies on a hypergraph. The hypergraph provides an easy way to model manifold industrial railway requirements in great detail. This includes well known vehicle composition requirements as well as relatively unexplored regularity stipulations. At the same time, the hypergraph directly leads to a mixed-integer programming (MIP) model for the RSRP.
(B) The main algorithmic ingredient to solve industrial instances of the RSRP is a coarse-to-fine (C2F) column generation procedure. In this approach, the hypergraph is layered into coarse and fine layers that distinguish different levels of detail of the RSRP. The coarse layers are algorithmically utilized while pricing fine columns until proven optimality. Initially, the C2F approach is presented in terms of pure linear programming in order to provide an interface for other applications.
(C) Rolling stock rotations have to comply to resource constraints in order to ensure, e.g., enough maintenance inspections along the rotations. These constraints are computationally hard, but are well known in the literature on the vehicle routing problem (VRP). We define an interface problem in order to bridge between the RSRP and the VRP and derive a straightforward algorithmic concept, namely regional search (RS), from their common features and, moreover, differences. Our RS algorithms show promising results for classical VRPs and RSRPs.
In the first part of the thesis we present these concepts, which encompass its main mathematical contribution. The second part explains all modeling and solving components of RotOR that turn out to be essential in its industrial application. The thesis concludes with a solution to a complex re-optimization RSRP that RotOR has computed successfully for DBF. In this application all ICE vehicles of the ICE-W fleets of DBF had to be redirected past a construction site on a high-speed line in the heart of Germany.
https://depositonce.tu-berlin.de/handle/11303/6309
Ralf Borndörfer
Markus Reuther
Markus Reuther
Martin Grötschel
OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Mathematical Optimization
MODAL-RailLab
ROTOR
MODAL-Gesamt
Reuther, Markus
Technische Universität Berlin