1686
eng
reportzib
0
2012-11-27
2012-11-27
--
Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production
The industrial treatment of waste paper in order to regain valuable
fibers from which recovered paper can be produced, involves several
steps of preparation. One important step is the separation of stickies
that are normally attached to the paper. If not properly separated,
remaining stickies reduce the quality of the recovered paper or even
disrupt the production process. For the mechanical separation process
of fibers from stickies a separator screen is used. This machine has
one input feed and two output streams, called the accept and the
reject. In the accept the fibers are concentrated, whereas the reject
has a higher concentration of stickies. The machine can be controlled
by setting its reject rate. But even when the reject rate is set
properly, after just a single screening step, the accept still has too
many stickies, or the reject too many fibers. To get a proper
separation, several separators have to be assembled into a
network. From a mathematical point of view this problem can be seen as
a multi-commodity network flow design problem with a nonlinear,
controllable distribution function at each node. We present a
nonlinear mixed-integer programming model for the simultaneous
selection of a subset of separators, the network's topology, and the
optimal setting of each separator.
Numerical results are obtained via
different types of linearization of the nonlinearities and the use of
mixed-integer linear solvers, and compared with state-of-the-art
global optimization software.
1438-0064
urn:nbn:de:0297-zib-16862
Armin Fügenschuh
Armin Fügenschuh
Christine Hayn
Dennis Michaels
ZIB-Report
12-44
eng
uncontrolled
Mixed-Integer Linear Programming
eng
uncontrolled
Nonlinear Programming
eng
uncontrolled
Piecewise Linear Approximation
eng
uncontrolled
Topology Optimization
eng
uncontrolled
Network Design
Computer Applications
OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Mathematical Optimization
Fügenschuh, Armin
https://opus4.kobv.de/opus4-zib/files/1686/ZR-12-44.pdf