Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-8122 misc Petkovic, Milena; Koch, Thorsten; Zittel, Janina Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21$\%$. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. 2021 urn:nbn:de:0297-zib-81221 Applied Algorithmic Intelligence Methods OPUS4-8351 Wissenschaftlicher Artikel Petkovic, Milena; Koch, Thorsten; Zittel, Janina Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. 2021 Energy Science and Engineering https://doi.org/10.1002/ese3.932 Applied Algorithmic Intelligence Methods OPUS4-8355 Wissenschaftlicher Artikel Petkovic, Milena; Chen, Ying; Gamrath, Inken; Gotzes, Uwe; Hadjidimitrou, Natalia Selini; Zittel, Janina; Xu, Xiaofei; Koch, Thorsten A hybrid approach for high precision prediction of gas flows About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes. 2022 25 Energy Systems 13 383 408 10.1007/s12667-021-00466-4 Applied Algorithmic Intelligence Methods OPUS4-8298 misc Petkovic, Milena; Zakiyeva, Nazgul; Zittel, Janina Statistical analysis and modeling for detecting regime changes in gas nomination time series As a result of the legislation for gas markets introduced by the European Union in 2005, separate independent companies have to conduct the transport and trading of natural gas. The current gas market of Germany, which has a market value of more than 54 billion USD, consists of Transmission System Operators (TSO), network users, and traders. Traders can nominate a certain amount of gas anytime and anywhere in the network. Such unrestricted access for the traders, on the other hand, increase the uncertainty in the gas supply management. Some customers' behaviors may cause abrupt structural changes in gas flow time series. In particular, it is a challenging task for the TSO operators to predict gas nominations 6 to 10 hours ahead. In our study, we aim to investigate the regime changes in the time series of nominations to predict the 6 to 10 hours ahead of gas nominations. 2021 urn:nbn:de:0297-zib-82988 Applied Algorithmic Intelligence Methods OPUS4-8879 Konferenzveröffentlichung Petkovic, Milena; Zakiyeva, Nazgul; Zittel, Janina Statistical Analysis and Modeling for Detecting Regime Changes in Gas Nomination Time Series As a result of the legislation for gas markets introduced by the European Union in 2005, separate independent companies have to conduct the transport and trading of natural gas. The current gas market of Germany, which has a market value of more than 54 billion USD, consists of Transmission System Operators (TSO), network users, and traders. Traders can nominate a certain amount of gas anytime and anywhere in the network. Such unrestricted access for the traders, on the other hand, increase the uncertainty in the gas supply management. Some customers' behaviors may cause abrupt structural changes in gas flow time series. In particular, it is a challenging task for the TSO operators to predict gas nominations 6 to 10 h-ahead. In our study, we aim to investigate the regime changes in time series of nominations to predict the 6 to 10 h-ahead of gas nominations. Springer, Cham 2022 5 Operations Research Proceedings 2021. OR 2021 188 193 10.1007/978-3-031-08623-6_29 Applied Algorithmic Intelligence Methods OPUS4-7352 misc Petkovic, Milena; Chen, Ying; Gamrath, Inken; Gotzes, Uwe; Hadjidimitriou, Natalia Selini; Zittel, Janina; Xu, Xiaofei; Koch, Thorsten A Hybrid Approach for High Precision Prediction of Gas Flows About 20% of the German energy demand is supplied by natural gas. Ad- ditionally, for about twice the amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by so-called transmissions system operators or TSOs. The number one priority of the TSOs is to ensure security of supply. However, the TSOs have no knowledge of the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high- pressure transport network of about 12.000 km length. Since flexibility and security of supply is of utmost importance to the German Energy Transition ("Energiewende") especially with the introduction of peak-load gas power stations, being able to predict in- and out-flow of the network is of great importance. In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary nodes of a transport network. The new method employs optimized feature minimization and selection. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve robust high quality forecasts on real world data for different types of network nodes. Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation 2019 urn:nbn:de:0297-zib-73525 Applied Algorithmic Intelligence Methods OPUS4-9110 Konferenzveröffentlichung Petkovic, Milena; Zittel, Janina Forecasting and modeling the dynamics of large-scale energy networks under the supply and demand balance constraint With the emergence of "Big Data" the analysis of large data sets of high-dimensional energy time series in network structures have become feasible. However, building large-scale data-driven and computationally efficient models to accurately capture the underlying spatial and temporal dynamics and forecast the multivariate time series data remains a great challenge. Additional constraints make the problem more challenging to solve with conventional methods. For example, to ensure the security of supply, energy networks require the demand and supply to be balanced. This paper introduces a novel large-scale Hierarchical Network Regression model with Relaxed Balance constraint (HNR-RB) to investigate the network dynamics and predict multistep-ahead flows in the natural gas transmission network, where the total in- and out-flows of the network have to be balanced over a period of time. We concurrently address three main challenges: high dimensionality of networks with more than 100 nodes, unknown network dynamics, and constraint of balanced supply and demand in the network. The effectiveness of the proposed model is demonstrated through a real-world case study of forecasting demand and supply in a large-scale natural gas transmission network. The results demonstrate that HNR-RB outperforms alternative models for short- and mid-term horizons. 2023 AIRO Springer Series: International Conference on Optimization and Decision Science Applied Algorithmic Intelligence Methods OPUS4-9325 Konferenzveröffentlichung Petkovic, Milena; Zittel, Janina Resilient Forecasting of High-Dimensional Network Time Series in the Energy Domain: A Hybrid Approach Energy systems are complex networks consisting of various interconnected components. Accurate energy demand and supply forecasts are crucial for efficient system operation and decision-making. However, high-dimensional data, complex network structures, and dynamic changes and disruptions in energy networks pose significant challenges for forecasting models. To address this, we propose a hybrid approach for resilient forecasting of network time series (HRF-NTS) in the energy domain. Our approach combines mathematical optimization methods with state-of-the-art machine learning techniques to achieve accurate and robust forecasts for high-dimensional energy network time series. We incorporate an optimization framework to account for uncertainties and disruptive changes in the energy system. The effectiveness of the proposed approach is demonstrated through a case study of forecasting energy demand and supply in a complex, large-scale natural gas transmission network. The results show that the hybrid approach outperforms alternative prediction models in terms of accuracy and resilience to structural changes and disruptions, providing stable, multi-step ahead forecasts for different short to mid-term forecasting horizons. 2023 Operations Research Proceedings 2023 Applied Algorithmic Intelligence Methods