Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-7460 Wissenschaftlicher Artikel Fröhler, Bernhard; Elberfeld, Tim; Möller, Torsten; Hege, Hans-Christian; Weissenböck, Johannes; De Beenhouwer, Jan; Sijbers, Jan; Kastner, Johann; Heinzl, Christoph A Visual Tool for the Analysis of Algorithms for Tomographic Fiber Reconstruction in Materials Science We present visual analysis methods for the evaluation of tomographic fiber reconstruction algorithms by means of analysis, visual debugging and comparison of reconstructed fibers in materials science. The methods are integrated in a tool (FIAKER) that supports the entire workflow. It enables the analysis of various fiber reconstruction algorithms, of differently parameterized fiber reconstruction algorithms and of individual steps in iterative fiber reconstruction algorithms. Insight into the performance of fiber reconstruction algorithms is obtained by a list-based ranking interface. A 3D view offers interactive visualization techniques to gain deeper insight, e.g., into the aggregated quality of the examined fiber reconstruction algorithms and parameterizations. The tool was designed in close collaboration with researchers who work with fiber-reinforced polymers on a daily basis and develop algorithms for tomographic reconstruction and characterization of such materials. We evaluate the tool using synthetic datasets as well as tomograms of real materials. Five case studies certify the usefulness of the tool, showing that it significantly accelerates the analysis and provides valuable insights that make it possible to improve the fiber reconstruction algorithms. The main contribution of the paper is the well-considered combination of methods and their seamless integration into a visual tool that supports the entire workflow. Further findings result from the analysis of (dis-)similarity measures for fibers as well as from the discussion of design decisions. It is also shown that the generality of the analytical methods allows a wider range of applications, such as the application in pore space analysis. 2019 10 Computer Graphics Forum 38 3 273 283 10.1111/cgf.13688 Visual Data Analysis OPUS4-8170 Wissenschaftlicher Artikel Fröhler, Bernhard; Elberfeld, Tim; Möller, Torsten; Hege, Hans-Christian; De Beenhouwer, Jan; Sijbers, Jan; Kastner, Johann; Heinzl, Christoph Analysis and comparison of algorithms for the tomographic reconstruction of curved fibres We present visual methods for the analysis and comparison of the results of curved fibre reconstruction algorithms, i.e., of algorithms extracting characteristics of curved fibres from X-ray computed tomography scans. In this work, we extend previous methods for the analysis and comparison of results of different fibre reconstruction algorithms or parametrisations to the analysis of curved fibres. We propose fibre dissimilarity measures for such curved fibres and apply these to compare multiple results to a specified reference. We further propose visualisation methods to analyse differences between multiple results quantitatively and qualitatively. In two case studies, we show that the presented methods provide valuable insights for advancing and parametrising fibre reconstruction algorithms, and support in improving their results in characterising curved fibres. 2020 13 Nondestructive Testing and Evaluation 35 3 328 341 10.1080/10589759.2020.1774583 Visual Data Analysis