@misc{FranzoneDeuflhardErdmannetal., author = {Franzone, Piero Colli and Deuflhard, Peter and Erdmann, Bodo and Lang, Jens and Pavarino, Luca Franco}, title = {Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8649}, number = {05-30}, abstract = {Adaptive numerical methods in space and time are introduced and studied for multiscale cardiac reaction-diffusion models in three dimensions. The evolution of a complete heartbeat, from the excitation to the recovery phase, is simulated with both the anisotropic Bidomain and Monodomain models, coupled with either a variant of the simple FitzHugh-Nagumo model or the more complex phase-I Luo-Rudy ionic model. The simulations are performed with the {\sc kardos} library, that employs adaptive finite elements in space and adaptive linearly implicit methods in time. The numerical results show that this adaptive method successfully solves these complex cardiac reaction-diffusion models on three-dimensional domains of moderate sizes. By automatically adapting the spatial meshes and time steps to the proper scales in each phase of the heartbeat, the method accurately resolves the evolution of the intra- and extra-cellular potentials, gating variables and ion concentrations during the excitation, plateau and recovery phases.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Adaptive Solutions of Nonlinear Parabolic Equations with Application to Hyperthermia Treatments}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3130}, number = {SC-97-44}, abstract = {We present a self-adaptive finite element method to solve nonlinear evolution problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to hyperthermia treatments to demonstrate its potential for the solving of complicated problems.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3283}, number = {SC-97-59}, abstract = {We describe an optimization process specially designed for regional hyperthermia of deap seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat--transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. Sequential minima are calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. Numerical results for a Sigma 60 applicator are presented. This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 273 \glqq Hyperthermie: Methodik und Klinik \grqq .}, language = {en} } @misc{ErdmannLangRoitzsch, author = {Erdmann, Bodo and Lang, Jens and Roitzsch, Rainer}, title = {KARDOS - User"s Guide}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7096}, number = {02-42}, abstract = {The adaptive finite element code {\sc Kardos} solves nonlinear parabolic systems of partial differential equations. It is applied to a wide range of problems from physics, chemistry, and engineering in one, two, or three space dimensions. The implementation is based on the programming language C. Adaptive finite element techniques are employed to provide solvers of optimal complexity. This implies a posteriori error estimation, local mesh refinement, and preconditioning of linear systems. Linearely implicit time integrators of {\em Rosenbrock} type allow for controlling the time steps adaptively and for solving nonlinear problems without using {\em Newton's} iterations. The program has proved to be robust and reliable. The user's guide explains all details a user of {\sc Kardos} has to consider: the description of the partial differential equations with their boundary and initial conditions, the triangulation of the domain, and the setting of parameters controlling the numerical algorithm. A couple of examples makes familiar to problems which were treated with {\sc Kardos}. We are extending this guide continuously. The latest version is available by network: {\begin{rawhtml} Downloads. \end{rawhtml}}}, language = {en} } @misc{ErdmannLangRoitzsch, author = {Erdmann, Bodo and Lang, Jens and Roitzsch, Rainer}, title = {Kaskade Manual - Version 2.0.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4970}, number = {TR-93-05}, abstract = {The KASKADE toolbox defines an interface to a set of C subroutines which can be used to implement adaptive multilevel Finite Element Methods solving systems of elliptic equations in two and three space dimensions. The manual contains the description of the data structures and subroutines. The main modules of the toolbox are a runtime environment, triangulation and node handling, assembling, direct and iterative solvers for the linear systems, error estimators, refinement strategies, and graphic utilities. Additionally, we included appendices on the basic command language interface, on file formats, and on the definition of the partial differential equations which can be solved. The software is available on the ZIB ftp--server {\tt elib} in the directory {\tt pub/kaskade}. TR 93--5 supersedes TR 89--4 and TR 89--05.}, language = {en} } @misc{ErdmannLangMateraetal., author = {Erdmann, Bodo and Lang, Jens and Matera, Sebastian and Wilmanski, Krzysztof}, title = {Adaptive Linearly Implicit Methods for Linear Poroelastic Equations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9312}, number = {06-37}, abstract = {Adaptive numerical methods in time and space are introduced and studied for linear poroelastic models in two and three space dimensions. We present equivalent models for linear poroelasticity and choose both the {\em displacement--pressure} and the {\em stress--pressure} formulation for our computations. Their discretizations are provided by means of linearly implicit schemes in time and linear finite elements in space. Our concept of adaptivity opens a way to a fast and reliable simulation of different loading cases defined by corresponding boundary conditions. We present some examples using our code {\sf Kardos} and show that the method works efficiently. In particular, it could be used in the simulation of some bone healing models.}, language = {en} } @misc{ErdmannKoberLangetal., author = {Erdmann, Bodo and Kober, Cornelia and Lang, Jens and Sader, Robert and Zeilhofer, Hans-Florian and Deuflhard, Peter}, title = {Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6403}, number = {01-14}, abstract = {By computed tomography data (CT), the individual geometry of the mandible is quite well reproduced, also the separation between cortical and trabecular bone. Using anatomical knowledge about the architecture and the functional potential of the masticatory muscles, realistic situations were approximated. The solution of the underlying partial differential equations describing linear elastic material behaviour is provided by an adaptive finite element method. Estimations of the discretization error, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method.}, language = {en} } @misc{DeuflhardLangNowak, author = {Deuflhard, Peter and Lang, Jens and Nowak, Ulrich}, title = {Adaptive Algorithms in Dynamical Process Simulation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1823}, number = {SC-95-16}, abstract = {Dynamical simulation of industrially relevant processes strongly advises the use of algorithms, which are {\em adaptive} both in time and in space discretization. The paper presents two alternatives: (a) a fully adaptive method of lines approach, which is based on finite difference methods and essentially applicable to 1D problems; (b) a fully adaptive Rothe method, which is based on a fast multilevel finite element method and applicable to 1D up to 3D.}, language = {en} }