@misc{WeiserSchielaDeuflhard, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7352}, number = {03-13}, abstract = {The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.}, language = {en} } @misc{WeiserSchiela, author = {Weiser, Martin and Schiela, Anton}, title = {Function space interior point methods for PDE constrained optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8027}, number = {04-27}, abstract = {A primal-dual interior point method for optimal control problems with PDE constraints is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed. Numerical results from an inexact continuation method applied to a model problem are shown.}, language = {en} } @misc{WeiserScacchi, author = {Weiser, Martin and Scacchi, Simone}, title = {Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50695}, abstract = {We investigate spectral deferred correction (SDC) methods for time stepping and their interplay with spatio-temporal adaptivity, applied to the solution of the cardiac electro-mechanical coupling model. This model consists of the Monodomain equations, a reaction-diffusion system modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical model describing the contraction and relaxation of the cardiac muscle. The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because it exhibits very different spatial and temporal scales. Therefore, spatio-temporal adaptivity is a promising approach to reduce the computational complexity. SDC methods are simple iterative methods for solving collocation systems. We exploit their flexibility for combining them in various ways with spatio-temporal adaptivity. The accuracy and computational complexity of the resulting methods are studied on some numerical examples.}, language = {en} } @misc{WeiserRoelligArndtetal., author = {Weiser, Martin and R{\"o}llig, Mathias and Arndt, Ralf and Erdmann, Bodo}, title = {Development and test of a numerical model for pulse thermography in civil engineering}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10980}, number = {08-45}, abstract = {Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens.}, language = {en} } @misc{WeiserGoetschel, author = {Weiser, Martin and G{\"o}tschel, Sebastian}, title = {State Trajectory Compression for Optimal Control with Parabolic PDEs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11676}, number = {10-05}, abstract = {In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.}, language = {en} } @misc{WeiserGaenzlerSchiela, author = {Weiser, Martin and G{\"a}nzler, Tobias and Schiela, Anton}, title = {A Control Reduced Primal Interior Point Method for PDE Constrained Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8138}, number = {04-38}, abstract = {A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples.}, language = {en} } @misc{WeiserGhosh, author = {Weiser, Martin and Ghosh, Sunayana}, title = {Theoretically optimal inexact SDC methods}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53140}, abstract = {In several inital value problems with particularly expensive right hand side computation, there is a trade-off between accuracy and computational effort in evaluating the right hand sides. We consider inexact spectral deferred correction (SDC) methods for solving such non-stiff initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive an error model bounding the total error in terms of the right hand side evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance.}, language = {en} } @misc{WeiserFreytagErdmannetal., author = {Weiser, Martin and Freytag, Yvonne and Erdmann, Bodo and Hubig, Michael and Mall, Gita}, title = {Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67247}, abstract = {Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements.}, language = {en} } @misc{WeiserErdmannSchenkletal.2017, author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63818}, year = {2017}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD.}, language = {en} } @misc{WeiserDeuflhardErdmann, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7768}, number = {04-01}, abstract = {The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.}, language = {en} } @misc{WeiserDeuflhard, author = {Weiser, Martin and Deuflhard, Peter}, title = {The Central Path towards the Numerical Solution of Optimal Control Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6380}, number = {01-12}, abstract = {A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {Interior Point Methods in Function Space}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7578}, number = {03-35}, abstract = {A primal-dual interior point method for optimal control problems is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed, and linear convergence of a short step pathfollowing method is established.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {On goal-oriented adaptivity for elliptic optimal control problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11192}, number = {09-08}, abstract = {The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {Optimization and Identification in Regional Hyperthermia}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10916}, number = {08-40}, abstract = {Regional hyperthermia is a cancer therapy aiming at heating tumors using phased array applicators. This article provides an overview over current mathematical challenges of delivering individually optimal treatments. The focus is on therapy planning and identification of technical as well as physiological quantities from MR thermometry measurements.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {Pointwise Nonlinear Scaling for Reaction-Diffusion-Equations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10493}, number = {07-45}, abstract = {Parabolic reaction-diffusion systems may develop sharp moving reaction fronts which pose a challenge even for adaptive finite element methods. We propose a method to transform the equation into an equivalent form that usually exhibits solutions which are easier to discretize, giving higher accuracy for a given number of degrees of freedom. The transformation is realized as an efficiently computable pointwise nonlinear scaling that is optimized for prototypical planar travelling wave solutions of the underlying reaction-diffusion equation. The gain in either performance or accuracy is demonstrated on different numerical examples.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {Faster SDC convergence on non-equidistant grids by DIRK sweeps}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18662}, abstract = {Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples.}, language = {en} } @misc{VolkweinWeiser, author = {Volkwein, Stefan and Weiser, Martin}, title = {Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6243}, number = {00-56}, abstract = {An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solves. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation.}, language = {en} } @misc{SchielaWeiser, author = {Schiela, Anton and Weiser, Martin}, title = {Superlinear Convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8490}, number = {05-15}, abstract = {A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.}, language = {en} } @misc{SchielaWeiser, author = {Schiela, Anton and Weiser, Martin}, title = {Barrier methods for a control problem from hyperthermia treatment planning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11567}, number = {09-36}, abstract = {We consider an optimal control problem from hyperthermia treatment planning and its barrier regularization. We derive basic results, which lay the groundwork for the computation of optimal solutions via an interior point path-following method. Further, we report on a numerical implementation of such a method and its performance at an example problem.}, language = {en} } @misc{Schiela, author = {Schiela, Anton}, title = {An Extended Mathematical Framework for Barrier Methods in Function Space}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10593}, number = {08-07}, abstract = {An extended mathematical framework for barrier methods for state constrained optimal control compared to [Schiela, ZIB-Report 07-07] is considered. This allows to apply the results derived there to more general classes of optimal control problems, in particular to boundary control and finite dimensional control.}, language = {en} } @misc{Schiela, author = {Schiela, Anton}, title = {Barrier Methods for Optimal Control Problems with State Constraints}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9504}, number = {07-07}, abstract = {We study barrier methods for state constrained optimal control problems with PDEs. In the focus of our analysis is the path of minimizers of the barrier subproblems with the aim to provide a solid theoretical basis for function space oriented path-following algorithms. We establish results on existence, continuity and convergence of this path. Moreover, we consider the structure of barrier subdifferentials, which play the role of dual variables.}, language = {en} } @misc{Schiela, author = {Schiela, Anton}, title = {State constrained optimal control problems with states of low regularity}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-509}, number = {08-24}, abstract = {We consider first order optimality conditions for state constrained optimal control problems. In particular we study the case where the state equation has not enough regularity to admit existence of a Slater point in function space. We overcome this difficulty by a special transformation. Under a density condition we show existence of Lagrange multipliers, which have a representation via measures and additional regularity properties.}, language = {en} } @misc{SchenkWaechterWeiser, author = {Schenk, Olaf and W{\"a}chter, Andreas and Weiser, Martin}, title = {Inertia Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10314}, number = {07-32}, abstract = {Fast nonlinear programming methods following the all-at-once approach usually employ Newton's method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of the Lagrange function is positive definite on the nullspace of the active constraints, otherwise some modifications to Newton's method are necessary. This condition can be verified using the signs of the KKT's eigenvalues (inertia), which are usually available from direct solvers for the arising linear saddle point problems. Iterative solvers are mandatory for very large-scale problems, but in general do not provide the inertia. Here we present a preconditioner based on a multilevel incomplete \$LBL^T\$ factorization, from which an approximation of the inertia can be obtained. The suitability of the heuristics for application in optimization methods is verified on an interior point method applied to the CUTE and COPS test problems, on large-scale 3D PDE-constrained optimal control problems, as well as 3D PDE-constrained optimization in biomedical cancer hyperthermia treatment planning. The efficiency of the preconditioner is demonstrated on convex and nonconvex problems with \$150^3\$ state variables and \$150^2\$ control variables, both subject to bound constraints.}, language = {en} } @misc{Sali, author = {Sali, Adrian}, title = {Coupling of Monodomain and Eikonal Models for Cardiac Electrophysiology}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60508}, abstract = {The primary goal of this paper is to study the coupling of monodomain and eikonal models for the numerical simulation of cardiac electrophysiology. Eikonal models are nonlinear elliptic equations describing the excitation time of the cardiac tissue. They are often used as very fast approximations for monodomain or bidomain models - parabolic reaction-diffusion systems describing the excitation wavefront in terms of ionic currents. The excitation front is a thin region with high gradients, whereas excitation times vary over larger domains. Hence, eikonal equations can be solved on much coarser grids than monodomain equations. Moreover, as eikonal models are not time-dependent, no time integration is needed. Eikonal models are derived from monodomain models making additional assumptions and using certain approximations. While generally the approximation is rather good, several specific situations are not well captured by eikonal models. We consider coupling the two models, i.e. using the monodomain model in regions where more accurate results or the shape of the wavefront are needed, and the eikonal model in the remaining parts of the domain, where the excitation time is sufficient. Restricting the monodomain simulation to a small subdomain reduces the computational effort considerably. Numerical methods for the simulation of the individual models are presented, with the finite element method as the main ingredient. Coupling conditions as well as algorithms for implementing the coupling are explained. The approximation quality and efficiency of the coupled model is illustrated on simple geometries using an Aliev-Panfilov membrane model.}, language = {en} } @misc{SagnolHegeWeiser, author = {Sagnol, Guillaume and Hege, Hans-Christian and Weiser, Martin}, title = {Using sparse kernels to design computer experiments with tunable precision}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59605}, abstract = {Statistical methods to design computer experiments usually rely on a Gaussian process (GP) surrogate model, and typically aim at selecting design points (combinations of algorithmic and model parameters) that minimize the average prediction variance, or maximize the prediction accuracy for the hyperparameters of the GP surrogate. In many applications, experiments have a tunable precision, in the sense that one software parameter controls the tradeoff between accuracy and computing time (e.g., mesh size in FEM simulations or number of Monte-Carlo samples). We formulate the problem of allocating a budget of computing time over a finite set of candidate points for the goals mentioned above. This is a continuous optimization problem, which is moreover convex whenever the tradeoff function accuracy vs. computing time is concave. On the other hand, using non-concave weight functions can help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the cost per iteration of the multiplicative weights updates that can be used to solve this problem.}, language = {en} } @misc{PruefertTroeltzschWeiser, author = {Pr{\"u}fert, Uwe and Tr{\"o}ltzsch, Fredi and Weiser, Martin}, title = {The convergence of an interior point method for an elliptic control problem with mixed control-state constraints}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8223}, number = {04-47}, abstract = {The paper addresses primal interior point method for state constrained PDE optimal control problems. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the regularizations are demonstrated by numerical examples.}, language = {en} } @misc{PruefertSchiela, author = {Pr{\"u}fert, Uwe and Schiela, Anton}, title = {The minimization of an L^{\infty}-functional subject to an elliptic PDE and state constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10714}, number = {08-17}, abstract = {We study the optimal control of a maximum-norm objective functional subject to an elliptic-type PDE and pointwise state constraints. The problem is transformed into a problem where the non-differentiable L^{\infty}-norm in the functional will be replaced by a scalar variable and additional state constraints. This problem is solved by barrier methods. We will show the existence and convergence of the central path for a class of barrier functions. Numerical experiments complete the presentation.}, language = {en} } @misc{PowellWeiser, author = {Powell, Gary and Weiser, Martin}, title = {Container Adaptors}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4308}, number = {SC-99-41}, abstract = {The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.}, language = {en} } @misc{MoualeuNgangueWeiserEhrigetal., author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43142}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An optimal control problem in polyconvex hyperelasticity}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14745}, number = {12-08}, abstract = {We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented.}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An affine covariant composite step method for optimization with PDEs as equality constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53954}, abstract = {We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery.}, language = {en} } @misc{Lehmann, author = {Lehmann, Felix}, title = {Inexaktheit in Newton-Lagrange-Verfahren f{\"u}r Optimierungsprobleme mit Elliptischen PDGL-Nebenbedingungen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-41972}, abstract = {Bei der numerischen L{\"o}sung von Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingung treten unvermeidlich Diskretisierungs- und Iterationsfehler auf. Man ist aus Aufwandsgr{\"u}nden daran interessiert die dabei entstehenden Fehler nicht sehr klein w{\"a}hlen zu m{\"u}ssen. In der Folge werden die linearisierten Nebenbedingungen in einem Composite-Step-Verfahren nicht exakt erf{\"u}llt. In dieser Arbeit wird der Einfluss dieser Ungenauigkeit auf das Konvergenzverhalten von Newton-Lagrange-Verfahren untersucht. Dabei sollen mehrere einschl{\"a}gige lokale Konvergenzresultate diskutiert werden. Anschließend wird ein konkretes Composite-Step-Verfahren formuliert, in dem die Genauigkeit der inneren Iterationsverfahren adaptiv gesteuert werden kann. Am Ende der Arbeit wird an zwei Musterproblemen die hohe {\"U}bereinstimmung der analytischen Voraussagen und der tats{\"a}chlichen Performanz der dargestellten Methoden demonstriert.}, language = {de} } @misc{KoberErdmannLangetal., author = {Kober, Cornelia and Erdmann, Bodo and Lang, Jens and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Adaptive Finite Element Simulation of the Human Mandible Using a New Physiological Model of the Masticatory Muscles}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7917}, number = {04-16}, abstract = {Structural mechanics simulation of bony organs is of general medical and biomechanical interest, because of the interdependence of the inner architecture of bone and its functional loading already stated by Wolff in 1892. This work is part of a detailed research project concerning the human mandible. By adaptive finite element techniques, stress/strain profiles occurring in the bony structure under biting were simulated. Estimates of the discretization errors, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method. In general, our simulation requires a representation of the organ's geometry, an appropriate material description, and the load case due to teeth, muscle, or joint forces. In this paper, we want to focus on the influence of the masticatory system. Our goal is to capture the physiological situation as far as possible. By means of visualization techniques developed by the group, we are able to extract individual muscle fibres from computed tomography data. By a special algorithm, the fibres are expanded to fanlike (esp. for the musc. temporalis) coherent vector fields similar to the anatomical reality. The activity of the fibres can be adapted according to compartmentalisation of the muscles as measured by electromyological experiments. A refined sensitivity analysis proved remarkable impact of the presented approach on the simulation results.}, language = {en} } @misc{KoberErdmannHellmichetal., author = {Kober, Cornelia and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Anisotropic Simulation of the Human Mandible}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7873}, number = {04-12}, abstract = {We focus on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible due to a lateral bite on the leftmost premolar. Based on experimental evidence, we adopt ``local''" orthotropy of the elastic properties of the bone tissue. Since the trajectories of anisotropic elasticity are not accessible from Computer Tomographic (CT) data, they will be reconstructed from (i) the organ's geometry and (ii) from coherent structures which can be recognized from the spatial distribution of the CT values. A sensitivity analysis comprising various 3D FE simulations reveals the relevance of elastic anisotropy for the load carrying behavior of a human mandible: Comparison of the load distributions in isotropic and anisotropic simulations indicates that anisotropy seems to ``spare''" the mandible from loading. Moreover, a maximum degree of anisotropy leads to kind of an load minimization of the mandible, expressed by a minimum of different norms of local strain, evaluated throughout the organ. Thus, we may suggest that anisotropy is not only relevant, but also in some sense ``optimal''.}, language = {en} } @misc{KlapprothDeuflhardSchiela, author = {Klapproth, Corinna and Deuflhard, Peter and Schiela, Anton}, title = {A Perturbation Result for Dynamical Contact Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10793}, number = {08-27}, abstract = {This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition.}, language = {en} } @misc{HinzeSchiela, author = {Hinze, Michael and Schiela, Anton}, title = {Discretization of Interior Point Methods for State Constrained Elliptic Optimal Control Problems: Optimal Error Estimates and Parameter Adjustment}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10414}, number = {07-40}, abstract = {An adjustment scheme for the relaxation parameter of interior point approaches to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method is based on error estimates of an associated finite element discretization of the relaxed problems and optimally selects the relaxation parameter in dependence on the mesh size of discretization. The finite element analysis for the relaxed problems is carried out and a numerical example is presented which confirms our analytical findings.}, language = {en} } @misc{GuentherLameckerWeiser, author = {G{\"u}nther, Andreas and Lamecker, Hans and Weiser, Martin}, title = {Direct LDDMM of Discrete Currents with Adaptive Finite Elements}, doi = {10.1007/s11263-012-0599-3}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13090}, number = {11-22}, abstract = {We consider Large Deformation Diffeomorphic Metric Mapping of general \$m\$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete \$m\$-current attributes.}, language = {en} } @misc{GoetschelWeiserSchiela, author = {G{\"o}tschel, Sebastian and Weiser, Martin and Schiela, Anton}, title = {Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11909}, number = {10-25}, abstract = {This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.}, language = {en} } @misc{GoetschelWeiserMaierhoferetal., author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina}, title = {Data Enhancement for Active Thermography}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15243}, abstract = {Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.}, language = {en} } @misc{GoetschelWeiser, author = {G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy Compression for PDE-constrained Optimization: Adaptive Error Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18575}, abstract = {For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances.}, language = {en} } @misc{GoetschelWeiser, author = {G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy Compression for Large Scale PDE Problems}, issn = {1438-0064}, doi = {10.1101/506378}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73817}, abstract = {Solvers for partial differential equations (PDE) are one of the cornerstones of computational science. For large problems, they involve huge amounts of data that needs to be stored and transmitted on all levels of the memory hierarchy. Often, bandwidth is the limiting factor due to relatively small arithmetic intensity, and increasingly so due to the growing disparity between computing power and bandwidth. Consequently, data compression techniques have been investigated and tailored towards the specific requirements of PDE solvers during the last decades. This paper surveys data compression challenges and corresponding solution approaches for PDE problems, covering all levels of the memory hierarchy from mass storage up to main memory. Exemplarily, we illustrate concepts at particular methods, and give references to alternatives.}, language = {en} } @misc{GoetschelvonTycowiczPolthieretal., author = {G{\"o}tschel, Sebastian and von Tycowicz, Christoph and Polthier, Konrad and Weiser, Martin}, title = {Reducing Memory Requirements in Scientific Computing and Optimal Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42695}, abstract = {In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data.}, language = {en} } @misc{GoetschelSchielaWeiser, author = {G{\"o}tschel, Sebastian and Schiela, Anton and Weiser, Martin}, title = {Kaskade 7 -- a Flexible Finite Element Toolbox}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74616}, abstract = {Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the Dune interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way.}, language = {en} } @misc{GoetschelNagaiahKunischetal., author = {G{\"o}tschel, Sebastian and Nagaiah, Chamakuri and Kunisch, Karl and Weiser, Martin}, title = {Lossy Compression in Optimal Control of Cardiac Defibrillation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18566}, abstract = {This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.}, language = {en} } @misc{GoetschelMinion, author = {G{\"o}tschel, Sebastian and Minion, Michael L.}, title = {Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64989}, abstract = {In gradient-based methods for parabolic optimal control problems, it is necessary to solve both the state equation and a backward-in-time adjoint equation in each iteration of the optimization method. In order to facilitate fully parallel gradient-type and nonlinear conjugate gradient methods for the solution of such optimal control problems, we discuss the application of the parallel-in-time method PFASST to adjoint gradient computation. In addition to enabling time parallelism, PFASST provides high flexibility for handling nonlinear equations, as well as potential extra computational savings from reusing previous solutions in the optimization loop. The approach is demonstrated here for a model reaction-diffusion optimal control problem.}, language = {en} } @misc{GoetschelMinion, author = {G{\"o}tschel, Sebastian and Minion, Michael L.}, title = {An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71490}, abstract = {To solve optimization problems with parabolic PDE constraints, often methods working on the reduced objective functional are used. They are computationally expensive due to the necessity of solving both the state equation and a backward-in-time adjoint equation to evaluate the reduced gradient in each iteration of the optimization method. In this study, we investigate the use of the parallel-in-time method PFASST in the setting of PDE constrained optimization. In order to develop an efficient fully time-parallel algorithm we discuss different options for applying PFASST to adjoint gradient computation, including the possibility of doing PFASST iterations on both the state and adjoint equations simultaneously. We also explore the additional gains in efficiency from reusing information from previous optimization iterations when solving each equation. Numerical results for both a linear and a non-linear reaction-diffusion optimal control problem demonstrate the parallel speedup and efficiency of different approaches.}, language = {en} } @misc{GoetschelMaierhoferMuelleretal., author = {G{\"o}tschel, Sebastian and Maierhofer, Christiane and M{\"u}ller, Jan P. and Rothbart, Nick and Weiser, Martin}, title = {Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58374}, abstract = {Carbon-fiber reinforced composites are becoming more and more important in the production of light-weight structures, e.g., in the automotive and aerospace industry. Thermography is often used for non-destructive testing of these products, especially to detect delaminations between different layers of the composite. In this presentation, we aim at methods for defect reconstruction from thermographic measurements of such carbon-fiber reinforced composites. The reconstruction results shall not only allow to locate defects, but also give a quantitative characterization of the defect properties. We discuss the simulation of the measurement process using finite element methods, as well as the experimental validation on flat bottom holes. Especially in pulse thermography, thin boundary layers with steep temperature gradients occurring at the heated surface need to be resolved. Here we use the combination of a 1D analytical solution combined with numerical solution of the remaining defect equation. We use the simulations to identify material parameters from the measurements. Finally, fast heuristics for reconstructing defect geometries are applied to the acquired data, and compared for their accuracy and utility in detecting different defects like back surface defects or delaminations.}, language = {en} } @misc{GoetschelHoehneKolkoorietal., author = {G{\"o}tschel, Sebastian and H{\"o}hne, Christian and Kolkoori, Sanjeevareddy and Mitzscherling, Steffen and Prager, Jens and Weiser, Martin}, title = {Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58386}, abstract = {The application of advanced imaging techniques for the ultrasonic inspection of inhomogeneous anisotropic materials like austenitic and dissimilar welds requires information about acoustic wave propagation through the material, in particular travel times between two points in the material. Forward ray tracing is a popular approach to determine traveling paths and arrival times but is ill suited for inverse problems since a large number of rays have to be computed in order to arrive at prescribed end points. In this contribution we discuss boundary value problems for acoustic rays, where the ray path between two given points is determined by solving the eikonal equation. The implementation of such a two point boundary value ray tracer for sound field simulations through an austenitic weld is described and its efficiency as well as the obtained results are compared to those of a forward ray tracer. The results are validated by comparison with experimental results and commercially available UT simulation tools. As an application, we discuss an implementation of the method for SAFT (Synthetic Aperture Focusing Technique) reconstruction. The ray tracer calculates the required travel time through the anisotropic columnar grain structure of the austenitic weld. There, the formulation of ray tracing as a boundary value problem allows a straightforward derivation of the ray path from a given transducer position to any pixel in the reconstruction area and reduces the computational cost considerably.}, language = {en} } @misc{Freytag, author = {Freytag, Yvonne}, title = {Optimal Experimental Design to Estimate the Time of Death in a Bayesian Context}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62475}, abstract = {This thesis is devoted to the interdisciplinary work between mathematicians and forensic experts: the modeling of the human body cooling process after death laying the foundation for the estimation of the time of death. An inverse problem needs to be solved. In this thesis the inverse problem computes the time of death given the measured body temperature and the Forward Model that simulates the body cooling process. The Forward Model is based on the heat equation established by Fourier. This differential equation is numerically solved by the discretization over space by the Finite Element Method and the discretization over time by the Implicit Euler Method. The applications in this thesis demand a fast computation time. A model reduction is achieved by the Proper Orthogonal Decomposition in combination with the Galerkin Method. For reasons of simplification the computations and the measurements are restricted to a cylindrical phantom that is made out of homogeneous polyethylene. The estimate of the time of death is accompanied by an uncertainty. The inverse problem is incorporated by Bayesian inference to interpret the quality of the estimate and the effciency of the experiment. The uncertainty of the estimate of the time of death is minimized by approaching the Optimal Design of the Experiment. An objective function measures the certainty of the data and lays the foundation of the optimization problem. Solving the optimization problem is successfully done by relaxing the complex discrete NP-hard problem and applying a gradient-based method. The results of this thesis clearly show that the design of an experiment has a great in- uence on the outcome of the quality of the estimate. The comparison of the estimate and its properties based on different designs and conditions reveals the effciency of the Design of Experiment in the context of the estimation of the time of death.}, language = {en} } @misc{FranzoneDeuflhardErdmannetal., author = {Franzone, Piero Colli and Deuflhard, Peter and Erdmann, Bodo and Lang, Jens and Pavarino, Luca Franco}, title = {Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8649}, number = {05-30}, abstract = {Adaptive numerical methods in space and time are introduced and studied for multiscale cardiac reaction-diffusion models in three dimensions. The evolution of a complete heartbeat, from the excitation to the recovery phase, is simulated with both the anisotropic Bidomain and Monodomain models, coupled with either a variant of the simple FitzHugh-Nagumo model or the more complex phase-I Luo-Rudy ionic model. The simulations are performed with the {\sc kardos} library, that employs adaptive finite elements in space and adaptive linearly implicit methods in time. The numerical results show that this adaptive method successfully solves these complex cardiac reaction-diffusion models on three-dimensional domains of moderate sizes. By automatically adapting the spatial meshes and time steps to the proper scales in each phase of the heartbeat, the method accurately resolves the evolution of the intra- and extra-cellular potentials, gating variables and ion concentrations during the excitation, plateau and recovery phases.}, language = {en} } @misc{FischerGoetschelWeiser, author = {Fischer, Lisa and G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy data compression reduces communication time in hybrid time-parallel integrators}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63961}, abstract = {Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Adaptive Solutions of Nonlinear Parabolic Equations with Application to Hyperthermia Treatments}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3130}, number = {SC-97-44}, abstract = {We present a self-adaptive finite element method to solve nonlinear evolution problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to hyperthermia treatments to demonstrate its potential for the solving of complicated problems.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3283}, number = {SC-97-59}, abstract = {We describe an optimization process specially designed for regional hyperthermia of deap seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat--transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. Sequential minima are calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. Numerical results for a Sigma 60 applicator are presented. This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 273 \glqq Hyperthermie: Methodik und Klinik \grqq .}, language = {en} } @misc{ErdmannKoberLangetal., author = {Erdmann, Bodo and Kober, Cornelia and Lang, Jens and Sader, Robert and Zeilhofer, Hans-Florian and Deuflhard, Peter}, title = {Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6403}, number = {01-14}, abstract = {By computed tomography data (CT), the individual geometry of the mandible is quite well reproduced, also the separation between cortical and trabecular bone. Using anatomical knowledge about the architecture and the functional potential of the masticatory muscles, realistic situations were approximated. The solution of the underlying partial differential equations describing linear elastic material behaviour is provided by an adaptive finite element method. Estimations of the discretization error, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method.}, language = {en} } @misc{DeuflhardSchielaWeiser, author = {Deuflhard, Peter and Schiela, Anton and Weiser, Martin}, title = {Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14204}, number = {11-39}, abstract = {This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator.}, language = {en} } @misc{DeuflhardNowakWeiser, author = {Deuflhard, Peter and Nowak, Ulrich and Weiser, Martin}, title = {Affine Invariant Adaptive Newton Codes for Discretized PDEs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7005}, number = {02-33}, abstract = {The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.}, language = {en} } @misc{DeuflhardHochmuth, author = {Deuflhard, Peter and Hochmuth, Reinhard}, title = {Multiscale Analysis of Thermoregulation in the Human Microvascular System}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6985}, number = {02-31}, abstract = {The bio-heat transfer equation is a macroscopic model for describing the heat transfer in microvascular tissue. So far the deduction of the Helmholtz term in the bio-heat transfer equation is not co role. In view of a future numerical application of this new mathematical model to treatment planning in hyperthermia we derive asymptotic estimates for first and second order correctors.}, language = {en} } @misc{Deuflhard, author = {Deuflhard, Peter}, title = {From Molecular Dynamics to Conformational Dynamics in Drug Design}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6878}, number = {02-20}, abstract = {Computational drug design studies molecular recognition in the {\em virtual lab}. The arising Hamiltonian dynamics is known to be chaotic and ill-conditioned already after picoseconds, whereas times are \$msec\$ up to \$min\$. Classical molecular dynamics with long term trajectory computation gives, at best, information about time and statistical ensemble averages. The present paper surveys a recent new modeling approach called {\em conformational dynamics}, which is due to the author and Ch. Sch{\"u}tte. This approach achieves information about the dy time scales by telescoping a short term deterministic model with a statistical model. Examples of small biomolecules are included.}, language = {en} } @misc{Deuflhard, author = {Deuflhard, Peter}, title = {A Comparison of Related Concepts in Computational Chemistry and Mathematics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7138}, number = {02-46}, abstract = {This article studies the relation of the two scientific languages Chemistry and Mathematics via three selected comparisons: (a) QSSA versus dynamic ILDM in reaction kinetics, (b) lumping versus discrete Galerkin methods in polymer chemistry, and (c) geometrical conformations versus metastable conformations in drug design. The common clear message from these comparisons is that chemical intuition may pave the way for mathematical concepts just as chemical concepts may gain from mathematical precisioning. Along this line, significant improvements in chemical research and engineering have already been possible -- and can be further expected in the future from the dialogue between the two scientific languages.}, language = {en} } @misc{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, issn = {1438-0064}, doi = {10.3390/a14010004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81343}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} } @misc{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91309}, abstract = {The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition.}, language = {en} } @misc{Binkowski, author = {Binkowski, Felix}, title = {On the convergence behavior of spectral deferred correction methods for convection-diffusion equations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66016}, pages = {64}, abstract = {Spectral deferred correction (SDC) Methoden, vorgestellt von Dutt, Greengard und Rokhlin in [1], sind iterative Verfahren zur numerischen L{\"o}sung von Anfangswertproblemen f{\"u}r gew{\"o}hnliche Differentialgleichungen. Wenn diese Methoden konvergieren, dann wird unter Verwendung von Zeitschrittverfahren niedriger Ordnung eine Kollokationsl{\"o}sung berechnet. Die L{\"o}sung von steifen Anfangswertproblemen ist eine relevante Problemstellung in der numerischen Mathematik. SDC-Methoden, speziell f{\"u}r steife Probleme, werden von Martin Weiser in [2] konstruiert. Die Theorie und die Experimente beziehen sich dabei auf Probleme, die aus r{\"a}umlich semidiskretisierten Reaktions-Diffusions-Gleichungen entstehen. In dieser Arbeit werden die Ans{\"a}tze aus [2] auf Konvektions-Diffusions-Gleichungen angewendet und das resultierende Konvergenzverhalten von SDC-Methoden untersucht. Basierend auf einem einfachen Konvektions-Diffusions-Operator, dessen spektrale Eigenschaften umfassend studiert werden, wird ein Schema zur Verbesserung dieses Verhaltens entwickelt. Numerische Experimente zeigen, dass eine Verbesserung der in [1] eingef{\"u}hrten SDC-Methoden m{\"o}glich ist. Die Untersuchungen ergeben weiterhin, dass das auch f{\"u}r komplexere Konvektions-Diffusions-Probleme gilt. [1] Alok Dutt, Leslie Greengard, und Vladimir Rokhlin. "Spectral deferred correction methods for ordinary differential equations." In: BIT 40.2 (2000), pp. 241-266. [2] Martin Weiser. "Faster SDC convergence on non-equidistant grids by DIRK sweeps." In: BIT 55.4 (2015), pp. 1219-1241.}, language = {en} }