@misc{GelssMateraSchuette, author = {Gelß, Patrick and Matera, Sebastian and Sch{\"u}tte, Christof}, title = {Solving the master equation without kinetic Monte Carlo: tensor train approximations for a CO oxidation model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55743}, abstract = {In multiscale models of heterogeneous catalysis, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. This usually is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO_2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.}, language = {en} }